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Abstract

In this communication, we deal with establishing several sets of generalized parameter-
free sufficient optimality conditions for a discrete minmax fractional programming problem
using two partitioning schemes and various second-order (%, f3,¢,m, ®,p,0,m) - univex-
ities. The obtained optimality results are application-oriented to other problems in mathe-

matical programming in the interdisciplinary nature.
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1 Introduction and Preliminaries

In order to establish several sets of generalized parameter-free sufficient optimality conditions, we begin

with the following discrete minmax fractional programming problem:
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(P) Minimize max fix)
1<i<p gi(x)

subjectto  G;(x) <0, j€gq, Hi(x)=0,ker, xeX,
where F is feasible set of (P), X is an open convex subset of R” (n-dimensional Euclidean space), f;, g,
i€Ep= {1,2,...,p}, Gj, j€ g, and Hy, k € r, are real-valued functions defined on X, and for each

i € p, gi(x) > 0 for all x satisfying the constraints of (P).

We aim at investigating some results on generalized second-order parameter-free sufficient optimality
conditions for (P) based on various second-order (%, B, ¢, &, @, p, 6, m) - univexity constraints. We
shall apply two partitioning schemes due to Mond and Weir [3] and Yang [9], in conjunction with the new
classes of generalized second-order invex functions, to formulate and discuss numerous sets of general-
ized second-order parameter-free sufficient optimality conditions for (P). To the best of our knowledge,
all the second-order sufficient optimality results established in this paper are new in the area of discrete
minmax fractional programming, while have a wide range of applications to mathematical programming

including, but limited to, several types of optimization problems.

The rest of this paper is organized as follows: In the remainder of this section, we generalize some
basic definitions and recall some auxiliary results which will be needed in the sequel. In Section 2, we
state and prove various second-order parameter-free sufficient optimality results for (P) using a variety
of generalized (.7, ,¢, 7, ®,p,0,m)-sounivexity assumptions. Finally, in Section 3 we summarize our
main results and also point out some further research opportunities arising from the principal problem

investigated in the present paper.

We next present more generalized versions of the new classes of (strictly) (¢,n,p,0,m)-sonvex,

(strictly) (9,1, p, 0,m)-pseudosonvex, and (prestrictly) (¢,n, p, 0,m)-quasisonvex functions introduced
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recently in [5]. Here we shall further generalize these functions by considering their univex counterparts.

We shall use the word sounivex for second - order univex.

Let f: X — R be a twice differentiable function.

Definition 1.1. The function f is said to be (strictly) (%, B, ¢, n, @, p, 6, m)-sounivex at x* if there
exist functions B : X xX >Ry =(0,0), 0 . R—>R, p: X xX >R, 7,0,0 : X xX — R", a sublinear

Sfunction F (x,x*;-) : R" = R, and a positive integer m such that for each x € X (x # x*) and 7 € R",

¢ (f(x) = F(x))(>) = F (06" B, x) VI (%)) + B () (e, 6), V2 f (")2)

—%<w(x7X*)7V2f(X*)Z> +p (6, x7)[16 (e, x|,

where || - || is a norm on R" and {(a,b) is the inner product of the vectors a and b.
The function f is said to be (strictly) (Z#,B,¢,7, ®,p,0,m)-sounivex on X if it is (strictly) (Z#,B,¢, 7w, ®,p,0,m)-

sounivex at each x* € X.

Definition 1.2. The function f is said to be (strictly) (Z#, B, ¢, &, ®, p, 8, m)-pseudosounivex at x* if
there exist functions B : X xX - R, 0 :R—R, p: X xX - R, 7,0,0 : X x X — R", a sublinear

Sfunction F (x,x*;-) : R" = R, and a positive integer m such that for each x € X (x # x*) and 7 € R",

F (05" B, )WV (x5)) + Bl (m(x,x"), V2 F(x")z) — %(w(%X*)»sz(X*)d

> —pxx)[[0(x, )" = ¢(f(x) - f(x7))(>) >0.

The function f is said to be (strictly) (Z,B,¢,7,®,p,0,m)-pseudosounivex on X if it is (strictly)

(#,B,¢0,7,@,p,0,m)-pseudosounivex ar each x* € X.

Definition 1.3. The function f is said to be (prestrictly) (Z#, B, ¢, n, @, p, 6, m)-quasisounivex at x*

if there exist functions B : X xX - R, ¢ :R—>R, p: X xX >R, 7,0,0 : X x X — R", a sublinear
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function F (x,x*;-) : R" — R, and a positive integer m such that for each x € X and z € R",

O(f(x) = F())(<) S0 = F (0,23 Bla,x") V(")) + B (x,x") (7(x,x), V2 £ (x")2)

(), VA (60)2) < —p ) [0(ex")

The function f is said to be (prestrictly) (Z#,B,¢,m, ®,p,0,m)-quasisounivex on X if it is (prestrictly)

(Z#.,B,¢,m,,p,0,m)-quasisounivex at each x* € X.,

In the proofs of the duality theorems, sometimes it may be more convenient to use certain alternative
but equivalent forms of the above definitions. These are obtained by considering the contrapositive
statements. For example, (%, B, ¢, 7, 0, p, 0, m)-quasisounivexity can be defined in the following

equivalent way:

The function f is said to be (%, 3,9, 7, ®,p, 0,m)-quasisounivex at x* if there exist functions f8 : X x
X—>Ri,0:R>R p:XxX—-R, 1,0,0:X xX — R", asublinear function .% (x,x*;-) : R" — R,

and a positive integer m such that for each x € X and z € R”,

F (0,55 Bl ) V(7)) + Bl x") (m(x,x"), V2 £ (x7)2)

- %(w(xw*%vzf(f)@ > =p(x,x) ][00, [" =

¢ (f(x) = f(x)) >0.

We observe that the new classes of generalized convex functions specified in Definitions 1.1 - 1.3
contain a variety of special cases that can easily be identified by appropriate choices of .7 (x,x*), ¢, p, 6,
and m. For example, if let F (x,x*;Vf(x*)) = B(x,x*)(Vf(x*),m(x,x*)), where 7 is a function from
X x X to R”, then we obtain the definitions of (strictly) (¢, x, p,0,m)-sonvex, (strictly) (¢,m,p,0,m)-
pseudosonvex, and (prestrictly) (¢, 7, p, 6,m)-quasisonvex functions introduced recently in [5].

We conclude this section by recalling a set of second-order parameter-free necessary optimality con-

ditions for (P). This result is obtained from Theorem 3.1 of [5] by eliminating the parameter A* and
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redefining the Lagrange multipliers. We shall use the form and features of this result to formulate our

generalized second-order parameter-free sufficient optimality conditions for (P).

Theorem 1.1. [4] Let x* be a normal optimal solution of (P), let A* = ¢(x*) =

maxi<<p fi(x")/gi(x*), and assume that the functions f;, g, i € p, G, j € q, and Hy, k € r, are twice
continuously differentiable at x*. Then for each z* € C(x*), there existu* €U ={u € R :u>0, Y'Y u;=
1}, v eRE ={veRI:v>0}, and w* € R such that

P
Zuf[D(x*,u*)Vfi(x ) —N(x",u")Vgi(x")] + Zv VG;(x")+ ZwZVHk( ) =0,
i=1 Jj= k=1

<Z*’{iu?[D(x u)vzfl( )= N(x*,u* ng +ZVV2

,
) e

k=1
u [D(x",u”) fi(x*) = N(x*,u")gi(x")] =0, i € p,
filx") NG ur)

ma =
iZigp gix) D)’

v}ij(x*) =0, jeg,

where C(x*) is the set of all critical directions of (P) at x*, that is,

C(x")={zeR": (Vfi(x") —AVgi(x"),z) =0, i € A(x"),
<VGJ'(X*)7Z> <0, je B(X*)v

(VH (x"),2) =0, ker},

Ay ={jep: fi(x)/g;(x") = max filx")/8i(x")}, B(x") ={j€q:G;(x") =0}, N(x",u") =

1<i<
l 1 lfl( )7 and D(X*,M*): ipzlu;‘kgi(x*)‘

In the above theorem, a normal optimal solution refers to an optimal solution at which an appropriate

second-order constraint qualification is satisfied.
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2 Second-Order Sufficient Optimality Conditions

In this section, we discuss several families of second-order parameter-free sufficient optimality results
under various generalized (%, ,¢, 7, ®,p,0,m)-sounivexity hypotheses imposed on certain combina-
tions of the problem functions. This is accomplished by employing a certain partitioning scheme which
was originally proposed in [3] for the purpose of constructing generalized dual problems for nonlinear
programming problems. For this we need some additional notation.

Let {Jo,J1,...,Ju} and {Ko, K1, ..., Ky } be partitions of the index sets g and r, respectively; thus, J, C
g for each u € MU{0}, J, NJy = 0 for each p,v € MU {0} with u # v, and U)/_yJ, = g. Obviously,
similar properties hold for {Ko, K1, ..., Ky }. Moreover, if M, and M, are the numbers of the partitioning
sets of g and r, respectively, then M = max{M;,M,} and J,, = 0 or K, = 0 for u > min{M;,M>}

In addition, we use the real-valued functions § — ®;(&,x,v,w), i€ p, & —

(&, x,u,v,w), and & — A,(&,v,w) defined, for fixed x,u,v, and w, on X as follows:

Cpi(gvxvuﬂ‘}?w) D(x, ”)fl(é) x u gl )+ Z v;G )+ Z Wka(é)a iEB,

) keKy
p
(&, x,u,v,w) =Y wiD(x,y) fi(§) = N(x,u)gi(E)]+ Y v;G;(§) + Y wiHi(§),
i=1 Jj€Jo keKo
A (Evw) ZVJ +Zwka(§), reM.
JEI keK;

In the proofs of our sufficiency theorems, we shall make frequent use of the following auxiliary result

which provides an alternative expression for the objective function of (P).

Lemma 2.1. [8] For eachx € X,

_ filx) _ Yo uifi(x)
()= 1Zicp gi(x)  wel i wigi(x)

Making use of the sets and functions defined above, we can now formulate our first collection of

generalized second-order parameter-free sufficient optimality results for (P) as follows.
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Theorem 2.1. Let x* € IF and assume that the functions f;, g, i € p, Gj, j € q, and Hy, k € r, are twice

differentiable at x*, and that for each z* € C(x*), there exist u* € U, v* € R‘i, and w* € R" such that

iu [D(x*, u*)V fi(x*) — N(x*,u*)Vg;(x* +ZV*VG +ZkaHk( ) =0, 2.1
i=1 Jj=1

M"c

Blxx) (m(r.x), Y DU ) V2(x) =N () Vi)

1

q r
+ Y VG ()7 + Y WiV ()2 )
J k=1

W [D(x*,u*) V2 fi(x*) — N(x*,u*) V2gi(x")]z"

T I

—%<a)(x,x*),

1

1

q r
+ Y ViVAG () + Y WiV H(x) ) 2 0V X €F, (22)
=1

£ NG u)
2 a(e) D u) 23

viGi(x") =0, jeg. (2.4)
Assume, furthermore, that any one of the following four sets of hypotheses is satisfied:

(a) (i) &— (& x*,u* v, w*) is prestrictly (F,B,0,7,®,p,0,m)-quasisounivex at x* and ¢ (a) >

0=a>0;

(ii) for eacht € M, & — A (E,v*,w*) is strictly (F,B, 0, 7, ®,p;, 0,m)-pseudosounivex at x*,

@, is increasing, and ¢,(0) = 0;
(iii) p(x,x*)+ XM, P, (x,x*) >0 forall x € F;

(b) (i) &— PE x*u* v w)is (F,B,9,7,0,p,0,m)-pseudosounivex at x* and ¢(a) >0 =a >

0;

(ii) for eacht € M, & — A (E v, w*) is (Z,B, ¢, 7, @, p;,0,m)-quasisounivex at x*, @, is in-

creasing, and ¢ (0)=0;
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(iii) p(x,x*) + XM, p,(x,x*) >0 forall x € F;
(c) (i) &— D&, x*,u* v, w¥) is prestrictly (F,B,9, 7, ®,p,0,m)-quasisounivex at x* and ¢ (a) >
0=a>0;

(ii) for eacht € M, & — A (E v, w*) is (Z,B, ¢, 7, @,p;,0,m)-quasisounivex at x*, @, is in-

creasing, and (ﬁ, (0)=0;
(iii) p(x,x*)+ XM, p;(x,x*) >0 forall x € F;
(d) (i) &— (& x* u* v, w*) is prestrictly (F,B,0,7,®,p,0,m)-quasisounivex at x* and ¢ (a) >
0=a>0;

(ii) for eacht € My, & — A(E,v*,w*) is (F,B, . T, @, pr, 0, m)-quasisounivex at x*, for each
tEMy #£0, & — A(E v W) is strictly (F, B, ¢, T, , By, 0,m)-pseudosounivex at x*, and

for eacht € M, ¢ is increasing and ¢ (0) = 0, where {My,M,} is a partition of M;

(iii) p(x,x*) + X1 pi(x,x*) >0 forall x €F.
Then x* is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P).

(a) : Itis clear that (2.1) and (2.2) can be expressed as follows:

uf [D(x*,u* )V fi(x") = N(x*,u*)Vgi(x*)] + Y viVGi(x")+

J€h

Y wiVH() + Y [ X VG () + ¥ wiVH(x)| =0, @.5)

keKy (=1 " jel, keKk,

-
X
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ui [D(x*, u*)sz,-(x*) —N(x*,u*)Vzgi(x*)]

+ Z v;Vsz(x*) + Z WZVZHk(x*)}z*>

Jj€Jo keKy

M
B (2(ex), L[ L viV6,() + L wivH()|)

T~

B(x,x*)<77:(x,x*),{

i=1

t=1 " jei kekK;
—;< {Zu (x*,u* szl( *)—N(x* u)Vzg, —1—2 *VzG( )+
J€D

Y wiViH(x) }2)

keKy
M

+{o0x), Y [ L viV26,(0) + ¥ wiVHi(x) |2 )] 2 0. 26)

t=1 " jei; kek;

Since for eacht € M,

(e v w* ZVG )+ZWsz(x)
JEJ kekK;
< 0 (by the feasibility of x)

=) viG;(x")+ Y wiHi(x*) (by (2.4) and the feasibility of x*)
j<l, keK,

and hence @; (A, (x,v*,w*) — A, (x*,v*,w*)) <0, it follows from (ii) that

ﬁ(xx B (x,x™) [ZVVG )+ ) wiVH(x )D

i€l kek,
+ B (x,x" < [Zv V2Gi(x*) + Y wiViH(x )} >
Jjeh kekK;
1 % * & % % %
— §<a)(x,x ) [ZvjVZGj(x )+ ) wiVZH, (x )}z >
Jjedh kekK;

< =P (x,x7) ][0 (e, ).
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Summing over r € M and using the sublinearity of .% (x,x*;-), we obtain

M=

?(x,x*;ﬁ(x,x*)

| L viVG) + Y wiVH(x)] )

=1 " jel, keK,

+ﬁ(x7x*)<ﬂ(x’x*)’§ { V;Vsz(x*) + Z wZVsz(x*)}z*>

JEJ keK;

B 2<(D(x,x*)’ﬁ [ viVGi(x') + ) w’tVsz(x*)}Z*>

JjEL keK;

S

Zﬁ(x>x*)||9(x,X*)Hm- 2.7

[:

Combining (2.5) - (2.7), and using (iii) we get

J(xx 3 B (x,x* {Zu (X" u")\Vfi(x*) = N(x*,u")Vgi(x* +§\/VG x°)
+Yy w;;VHk(x*)})

keKy

[P u" ) V2 fila) = N(x" 1) Vg ()]

'Mﬁ

+ B ) (mlxx), {

1

+ Y VG () + L wiViH(x) <)

j€do keKy

1 p
— 31 @0ex). { LD w) V() =N () V2 ()] + F viVAG(
i=1 J€Jo
W*Vz x* *
+ L vV ) be)]

[VJ:

Pr (6, ) [0 0e, )™ = = (x,x7) (16 (x, ) |

[:
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which by virtue of (i) implies that
(ﬁ(@(x,x*,u*,v*,w*) — @(x*,x*,u*,v*,w*)) >0.
But ¢(a) > 0= a >0, and hence we get

D(x,x"u v w) > (T X ut v w') =0,

where the equality follows from the feasibility of x* and definitions of D(x*,u*) and D(x*,u*). Since

x € I, the above inequality reduces to

up [D(x*, ) fi(x) = N (x", ) i(x)] = 0. (2.8)

on

1

1

Now using (2.3), (2.8), and Lemma 2.1, we see that

o u X Ui fix) Yo uifilx) _
Pe) = D) urgi(x) =Te Y7 uigi(x) )

Since x € F was arbitrary, we conclude from this inequality that x* is an optimal solution of (P).

(b) : Proceeding as in the proof of part (a), we see that (ii) leads to the following inequality:

M
J(xx ;B (x,x") Z[ZVVG )+ Y, wiVH(x ))

t=1 "~ jeJj; kekK;

+ B (x,x* < 7(x,x* Z[Zvvz —l—Zkaszx z>

t=1 " jeJ; keK;

)
< Z[ZV*VZ 9+ ¥ WiV H(x)|2) < i x,3%) 10 (x,2°) ™.

t=1 " jeJ; kek;
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Combining this inequality with (2.5) and (2.6), and using (iii) we get

J(xx 3 B (x,x* {Zu (x*u)V]i(x*) = N, u")Vgi(x* —i-;vVG x")
+ Yy W;VHk(x*)D

keKy

+Bx,x){m(x, {Zu (¢ )V Fi(x") = N i) Vg (x7))
+Y v}fVZGj )+ Y kaZHk(x*)}z*>

Jj€Jdo keKy

_%< ,{Zu (x*,u* Vf,( *)—N(x" u)Vg,( )]

+ Z v}fVZGj X))+ Z w,tVsz(x*)}z*>

jE]() kGK()

Z x,x)116 (e, 7)™ = =P (o, x7)[16 (7)™

which by virtue of (i) implies that

(])(fb(x,x*,u*,v*,w*) — CID(x*,x*,u*,v*,w*)) >0.

The rest of the proof is identical to that of part (a).

(c) and (d) : The proofs are similar to those of parts (a) and (b). L]

Theorem 2.2. Let x* € F and assume that the functions fi, g, i € p, Gj, j € q, and Hy, k € r, are twice
differentiable at x*, and that for each 7* € C(x*), there exist u* € U, v* € Ri, and w* € R" such that

(2.1) - (2.4) and the following relations hold:

u; [D(x*,u®) fi(x*) = N(x*,u")gi(x*)] =0, i€ p. (2.9)

Assume, furthermore, that any one of the following seven sets of hypotheses is satisfied:

(a) (i) foreachicl, ={ic p}, & — @;(&,x*,u*,v',w*)is (Z,B, i, 7,0, p;, 0,m)-pseudosounivex

at x*, ¢; is strictly increasing, and ¢;(0) = 0;
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(ii) for eacht € M, & — A (E v, w*) is (Z,B, 8,7, @, p;,0,m)-quasisounivex at x*, @, is in-
creasing, and ¢, (0)=0;
(iii) Lier, u; pi(%,x") + Ly pi(x,x") > 0 for all x € F;
(b) (i) foreachi€ Iy, & — ®;(E,x*,u* v, w*) is prestrictly (F,B, ¢, T, ®, i,
0,m)-quasisounivex at x*, @; is strictly increasing, and ¢;(0) = 0;

(ii) for eacht € M, & — A (E,v*,w*) is strictly (F,B, ¢, 7, ®,p;, 0, m)-pseudosounivex at x*,

&, is increasing, and §;(0) = 0;
(iii) Yicq, u; Pi(x,x") +YM  pi(x,x*) >0 forall x €T;
(c) (i) foreachic I, & — ®;(&,x*,u*,v*,w*) is prestrictly (F,B,¢:, 7, @, p;,
0,m)-quasisounivex at x*, @; is strictly increasing, and ¢;(0) = 0;

(ii) for eacht € M, & — A (E v, w*) is (Z,B, 8,7, @, p;,0,m)-quasisounivex at x*, @, is in-

creasing, and ¢, (0)=0;
(iii) Yier, uipi(x,x*) + XL, pr(x,x*) > 0 forall x € F;
(d) (i) for eachi€ Iy, & — ®;(E,x*,u* v, w*) is (F,B,¢:, 7, @, p;,0,m)-pseudosounivex at x*,
foreachi€ Ly, & — ®;(&,x*,u* v, w*) is prestrictly (F , B, ¢;, T, ®, p;, 0, m)-quasisounivex

at x*, and for each i € 1., @; is strictly increasing and §;(0) = 0, where {I,, L } is a parti-

tion of I.;

(ii) for eacht € M, & — A(E V", w*) is strictly (F,B, ¢, 7, ®, p;,0,m)-pseudosounivex at x*,

&, is increasing, and ¢,(0) = 0;

(iii) Tier, ufpilx,x") + XL, py(x,x*) > 0 for all x € F;
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(e) (i) foreachi€ iy #0, & — ®;(E,x*, u* v, w*) is (F,B, 01,7, ®,p;, 0,m)-pseudosounivex at
x*, foreachi€ Iy, & — ®;(&,x* u* v, w*) is prestrictly (F, B, ¢, T, @, p;, 0, m)-quasisounivex
at x*, and for each i € 1., @; is strictly increasing and ¢;(0) = 0, where {1\, } is a parti-
tion of I.;

(ii) for eacht € M, & — A (E v, w*) is (F,B, &, pr, T, ®,0,m)-quasisounivex at x*, ¢ is in-

creasing, and ¢;(0) = 0;
(iii) Yieqr, uipi(x,x") + Y7 pi(x,x*) >0 forall x € TF;
(f) (l) fOr eachi € I+a é - q)i(€7X*7u*7V*aW*) isprestrictly (‘gz’ﬁv(ﬁivﬂv wapia
0,m)-quasisounivex at x*, @; is strictly increasing, and ¢;(0) = 0;

(ii) foreacht € M, # 0, & — A, (E,v*,w*) is strictly (F, B, &, T, @, p;, 0, m)-pseudosounivex
at x*, for eacht € My, & — A (E v, w*) is (F,B, ¢, T, , Pr, 0, m)-quasisounivex at x*, and

foreacht € M, ¢ is increasing and ¢,(0) = 0, where {M,,M,} is a partition of M;
(iii) Lier, uf pi(x,x*) + XLy Py (x,x*) > 0 forall x € F;
(g) (i) foreachic I, & — ®;(&,x* u* v, w*) is (F,B, ¢, pi, T, @, 0, m)-pseudosounivex at x*,
foreachi€ Ly, & — ®;(&,x*,u* v, w*) is prestrictly (F , B, ¢;, T, ®, p;, 0, m)-quasisounivex

at x*, and for each i € 1., @; is strictly increasing and ¢;(0) = 0, where {1\, } is a parti-

tion of I.;

(ii) for eacht € My, & — A(&E,v*,w*) is strictly (F, B, &, 7, , p;, 0, m)-pseudosounivex at
x*, for eacht € My, & — A(E, v, W) is (Z,B, ¢, 7, @, pr,0,m)-quasisounivex at x*, and

for eacht € M, §; is increasing and ¢,(0) = 0, where {M,M,} is a partition of M;
(idi) Tier, u; Pi(x,x*) + LiLy pr(x,x") > 0 forall x € F;

(v) I # 0, My # 0, or Ly, uf pi(x,x*) + XL py(x,x%) > 0.
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Then x* is an optimal solution of (P).

Proof. (a) : Suppose to the contrary that x* is not an optimal solution of (P). Then there is a feasible

solution * of (P) such that ¢(X) < ¢(x*) and hence it follows that

D(%,u”) fi(X) — N(%,u")gi(X) <0 foreachic p.

Keeping in mind that v* > 0 and using this strict inequality, we see that

®;(x,x" v, w*) = D(x,u”) f;(X) — %)+ Y viGi(X)+ ) wiH(%)

Jj€do keKy

D(x,u”) fi(X) — N(x,u”)gi(x) (by the feasibility of )

<0

=D(%,u") fi(x") = N(%,u")gi(x") + Y} ViG;(x") + Y wiHi(x")

j€do keKy
(by (2.4), (2.9), and the feasibility of x*)

= d;(x", x" v W),

and so using the properties of the function ¢;, we get

¢,‘(CI)[()Z,X*,V*,W*) — CD,-(x*,x*,v*,w*)) <0,
which in view of (i) implies that for each i € I,

F (x,x*; ﬁ(x,x*){D(x, W)Y fi(x") — N, u* ) Vai(x*)
+ Z ViVG;(x*) + Z wi VH(x )})

Jjedo keKy

+ B (x,x") <77:()E,x*), [D()E, u*)sz,-(x*) —N(x, u*)Vzg,-(x*)

+ Y viViG )+ X wiVPH(x)|2)
j€Jdo keKy
—%<a)(x7x*), [D(x,u*)vzf,-(x )= NE ) V() + Y viv2G, ()
J€Jo
+ ¥ WiV H() |2) < —piw ) |05 |

keKy
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Since u* > 0, uj = 0 for each i € p\I,, Zp:1 uf =1, and .# (x,x*;) is sublinear, the above inequalities

i

yield

7 (4B ) L D5 VA =N (e Vi)
+ Y ViIVG(x*)+ ) wiVH(x )})

Jj€Jo keKy
+ B (x,x* < {Zu (%,u*)V2fi(x*) — N(Z,u*)V2gi(x")]
+ Y viviG, () + ¥ wiViH () o)

) keKy

f1< {Zu (&, u)V2fi(x") — N(%,u") V2gi(x")]

+ Y v+ Y wiv Hk(x*)}z*> <= Y utpilx,x)|0 (% x| (2.10)

J€Jho keky i€l

As seen in the proof of Theorem 2.1, our assumptions in (ii) lead to

(xx B (x,x™) f[ZvVG )+ Y, wiVH(x )D
t=1 " jeJ; kEK;
M
B (m(ex), Y [ L vivie () + ¥ wivH)))
t=1 " jeJ; kekK;
ot [ e i)
AN L A &

Ma

Pr (x, ) [0 (%, ) [,

N
I
—_
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which when combined with (2.5) and (2.6) results in

+ Z ViVGi(x*) + Y wiVH(x )})

VS keKy
+ B ) w (s, [Zu (%, 45 )V Fi(x") = N(%,u") V2 gi(x")]
+ Z vjVZGj x°)+ Z w,tVsz(x*)}z*>
j€do keKo
1 P
— 5 (@0rx), [ L D)V fi(x) = N(&u') Vg ()]
i=1
M
+ Y ViV + Y wiViH(x" } > Y (e, ) [0, x) 1™
JEJ keKy =1

In view of (iii), this inequality contradicts (2.10). Hence, x* is an optimal solution of (P).

(b) - (g) : The proofs are similar to that of part (a). ]

In the next theorem, we present another collection of sufficient optimality results which are somewhat
different from those stated in Theorems 2.1 and 2.2. These results are formulated by utilizing a partition
of p in addition to those of g and r, and by placing appropriate generalized (%, ,¢,7, ®,p,0,m)-
sounivexity requirements on certain combinations of the problem functions.

Let {Io,11,...,I;} be a partition of p such that & = {0,1,2,...,4} C.# ={0,1,...,M}, and let the

real-valued function § — IT,(&,x,u,v,w) be defined, for fixed u,v,w by

I, (&, x,u,v,w) = Zu, (x,u) fi(E) — N(x,u)g;(& —i—Zv]
i€l jed;
+ Y wiH (&), teM.
kekK;

Theorem 2.3. Let x* € F and assume that the functions f;, g;, i € p, Gj, j € q, and H, k € r, are twice
differentiable at x*, and that for each z* € C(x*), there exist u* € U, v € R%, and w* € R” such that
(2.1) - (2.4) and (2.9) hold. Assume, furthermore, that any one of the following seven sets of hypotheses

is satisfied:
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(a) (i) foreacht € L, & — T1,(E,x* ,u* v, w*) is strictly (Z,B,,, T, ®, p;, 0,m)- pseudosounivex
at x*, @ is increasing, and ¢;(0) = 0;

(ii) foreacht € M\ L, E — N(E VW) is (F, B, ¢, T, ®, p;, O, m)-quasisounivex at x*, ¢,

is increasing, and ¢;(0) = 0;
(iii) Tye.q pi(6,x") > 0 for all x € F;
(b) (i) foreacht € £, & — 1, (&, x* u* ,v*,w*) is prestrictly (F,B, ¢, m,®,p;,0,m)-
quasisounivex at x*, @ is increasing, and ¢;(0) = 0;

(ii) foreacht € M\ L, E — N (E, v, w*) is strictly (F, B, ¢, T, ©, p;, 0, m)-pseudosounivex at

x*, @ is increasing, and ¢,(0) = 0;
(iii) Yic p Pr(x,x*) >0 for all x € F;
(¢c) (i) foreacht € L, & — TL(E,x*,u* v, w*) is prestricily (F,B,¢;, 7, ®,p;,0,m)-
quasisounivex at x*, @ is increasing, and ¢;(0) = 0;

(ii) foreacht € M\ L, E — N(E VW) is (F,B, ¢, T, 0,p;,0,m)-quasisounivex at x*, ¢ is

increasing, and ¢,(0) = 0;

(iii) Yicn Pr(x,x*) > 0 for all x € F;

(d) (i) foreacht € £, & — IL,(&,x* ,u* v, w*) is strictly (F ,B, ¢, T, 0,p;,0,m)-
pseudosounivex at x*, for eacht € %5, & — I, (&,x* ,u*,v*,w*) is prestrictly (F ,B, ¢, 7, 0, p;,0,m)-
quasisounivex at x*, and for eacht € £, @, is increasing and ¢;(0) = 0, where { L1, L5} is

a partition of £;

(ii) for eacht € M\ L, & — N (E, v, w*) is strictly (F,B, ¢, T, ©,p;,0)-pseudosounivex at

x*, @ is increasing, and ¢,(0) = 0;
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(iii) Yic p Pr(x,x*) >0 for all x € F;

(e) (i) foreacht € L #0,E — I (&, x* u* v, w*) is strictly (F ,B, ¢, m,0,p;,0,m)-
pseudosounivex at x*, for eacht € &5, & — L (&, u* ,v*,w* A*) is prestrictly (F , B, ¢, T, 0, p;,0,m)-
quasisounivex at x*, and for eacht € £, @ is increasing and ¢;(0) = 0, where { L1, %5} is

a partition of £ ;

(ii) for eacht € M\ L, & — N(E VW) is (F,B,,pi,0,m)-quasisounivex at x*, @ is in-

creasing, and ¢,(0) = 0;

(iii) Yic. 4 Pr(x,x*) > 0 for all x € F;

(f) (i) foreacht€ L, & —TL,(E,x*,u* v, w*) is prestrictly (F, B, ¢, ®, @, p;, 0,m) -quasisounivex

at x*, ¢ is increasing, and ¢,(0) = 0;

(ii) for each t € (M \ L)1 £ 0, E — A (E v, w*) is strictly (F, B, &, &, ©, p;, 0, m) -
pseudosounivex at x*, for eacht € (M \ L )2, E — A(E VW) is (F,B,¢, T, 0,p;,0,m)-
quasisounivex at x*, and for each t € £, ¢ is increasing and ¢;(0) = 0, where {(A \

D, (AN L )2} is a partition of M\ L ;

(iii) Tie.p0pr(x,x%) > 0 for all x € F;

(g) (i) foreacht € A, & — I (&, x* ,u* v, w*) is (F,B,¢;,7,0,p;,0,m)-
pseudosounivex at x*, for eacht € £, & — I, (&,x* ,u*,v*,w*) is prestrictly (F ,B, ¢, 7, 0, p;,0,m)-
quasisounivex at x*, and for each t € £, ¢ is increasing and ¢,(0) = 0, where { £, L5} is

a partition of £;

(ii) foreacht € (M \ L)1, E — A (&, v ,w*) is strictly (F, B, ¢, T, ®, p, O, m)-pseudosounivex

atx*, foreacht € (M\ L )2, & — A (E VW) is (F,B, ¢, T, 0,p;,0,m)-quasisounivex at
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x*, and for eacht € M\ L, ¢ is increasing and ¢,(0) =0, where {(A\ L)1,(AM\ L )2}

is a partition of M\ L
(iii) Yic 4 Pr(x,x*) 2 0 for all x € F;
(v) LA#0, (M\L)1#0, or Lyc gy Pr(x,x*) > 0.
Then x* is an optimal solution of (P).

Proof. (a): Suppose to the contrary that x* is not an optimal solution of (P). As seen in the proof of

Theorem 2.2, this supposition leads to the inequalities

D(x,u”) fi(%) = N(¥,u")gi(¥) <0, i€ p,

for some x € F. Since u* > 0, we see that for eachr € .Z,

Y ui[D(x,u") fi(X) — N(%,u")gi(¥)] <O. (2.11)

i€l

Now using this inequality, we see that

IT, (%, x", u” ,v' , w*) Zu (%, u") fi(X) — N(x,u")gi(%)]

i€l
+ Y ViGi(®)+ Y wiHk(%)
jel, kek,

< Zu (%, u") fi:(X) — N(x,u")gi(%)] (by the feasibility of x)

iel;

<0 (by (2.1D)

- Zu )C u* ft ) ( 7u*)gi(X*)]+ ZV;G](X )

i€l JEJ

+ Z wiH(x") (by (2.4), (2.9), and the feasibility of x*)
kek,

=TI (x*,x",u” v, w¥),

and hence

¢t (H[(.f,.x*7u*7v*,w*) _I—II(X*7'X*7M*7V*7W*)) S O’
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which in view of (i) implies that

J(xx 3 B (x,x™) {ZI’M (X, u")Vfi(x") = N(x,u")Vg;(x*)]
+ Y VIVG(x) + Y wiVH(x' })

e keK,
+Blx,x)(w(, [ZI DUt V2 () — N (") Vi)
+J§tvf;V2Gj(x*)+k§(tW;V2Hk(x*>}Z*>
_1< [;u (5,u" )V fi(x") = N(&u*) V2gi(x")]

+Y viVGi(x) + ) WEVZHk(x*)}Z*>

= keKk,
< —pe(X,x7) [0 (%, x7) ||

Summing over 7 € £ and using the sublinearity of .% (x,x*;-), we obtain

7 (Bl ) { LDV (57) =N V)
£ Y [ X viveie) + ¥ owivaie)] )

te? " jek; kekK;
B} (a(ex), B { B uilDlwa)VAG) - Nwu) Vi)
+ Y VVIG ) + L WiV HI(x) |2
el keK,
< Z{Zu (%,u*)V2fi(x*) — N(%,u" )V gi(x*)]
te.? i€l

+ L viVEG) + ¥ wiViH(x) }2)

JjeJ;t kek;
— Y pi(®xH)[0(x X" (2.12)
e’

Proceeding as in the proof of Theorem 2.1, we obtain for each t € .#Z\.Z,

01 (A5 W) = AV w)) <0,
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which in view of (ii) implies that

J(xx 3B (x,x™) [ZVVG )+ Y wiVHi(x )D

JEJ kek;
+[3(x,x*)<7t Lg}tv*sz +kgz]é,WZV2Hk( )} >
_ l< [Jg ViVEG(x") +k§(’ w}inHk(x*)}Z*>

< —pi (%,x7)[|6 (%, 7)™

Summing over ¢ € .#\.Z and using the sublinearity of .7 (x,x*;-), we get

fi(x,x*;ﬁ()ﬁx [ Z [ZV*VG +ZWkVHk( )D

te\L " jES: kek;

BN (a(Ex), L | LvVAG()+ ¥ wiViHi(x)] )

teM\L ~JEI: kek,

o), ¥ [E V6 0)+ ¥ wive)])

teM\L " JjEk kek,
<— ) p@Ex)[6E )" (2.13)
teM\L

Now combining (2.12) and (2.13) and using (iii), we obtain

7 (Bl ) { LDl V(37) =N V)
+Zv VG( +ZkaHk( )})

j= k=1

+ B (x,x") < {Zu (%,u*)V2fi(x*) — N(Z,u*)V2gi(x")]

+ Z VIV2G(c) + Y WiV H(x") b2 )

k=1

~ 3 (@0 { D6 ¥ i) - NG V)

LY VG + Y w;v2Hk<x*>}z*> <= ¥ pEa)0(x)|" <0 214)
j=1 k=1 te M

Now multiplying (2.1) by B (x,x*), applying the sublinear function .% (x,x*;-) to both sides of the result-
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ing equation, and then adding the equation to (2.2), we get

P
F (vx'sB o) { L D) VAG) = N Vi)
+Zv VG( +ZkaHk( )})

j= k=1

+ B (x,x") < {Zu (%,u*)V2fi(x*) — N(%,u*)V2gi(x")]

+ Z V2G4 Y WiV H(x") b2 )

k=1

_%< {Zu (F,u") V2 fi(x") — N (F,u") V2gi(x")]

q r
+ Y ViVAG () + Y WiV H(x) f2) 20,

j=1 k=1
which contradicts (2.14). Therefore, we conclude that x* is an optimal solution of (P).

(b) - (2) : The proofs are similar to that of part (a). ]
3 Concluding Remarks

Remark 3.1. Based on a Dinkelbach-type [1] parametric approach, we have in this paper established
numerous sets of generalized second-order sufficient optimality criteria for a discrete minmax fractional
programming problem using a variety of generalized (%, 3,9, m, ®,p,0,m)- sounivexity assumptions.
These optimality results can be used for constructing various duality models as well as for developing
new algorithms for the numerical solution of minmax fractional programming problems. Furthermore,
main results can be used, for example, employing similar techniques, one can investigate the second-
order sufficient optimality aspects of the following semiinfinite minmax fractional programming prob-

lem:

Minimize max filx)
1<i<p gi(x)
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subject to

Gj(x,t) <0 forallt € Tj, j€gq; Hi(x,s) =0 forallse S, ker; xcX,

where X, f;,and g;, i € p, are as defined in the description of (P), for each j € q and k € r, Tj and Sy are
compact subsets of complete metric spaces, for each j € g, & — G;(&,1) is a real-valued function defined
on X for all t € T}, for each k € r, & — Hy(&,s) is a real-valued function defined on X for all s € S,
for each j € g and k € r, t — Gj(x,t) and s — Hi(x,s) are continuous real-valued functions defined,

respectively, on T and Sy for all x € X..
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