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Higher - Order Parameter-Free
Optimality Models for Discrete

Fractional Programming
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Abstract

In this communication, we deal with establishing several sets of generalized parameter-

free sufficient optimality conditions for a discrete minmax fractional programming problem

using two partitioning schemes and various second-order (F ,β ,φ ,π,ω,ρ,θ ,m) - univex-

ities. The obtained optimality results are application-oriented to other problems in mathe-

matical programming in the interdisciplinary nature.
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1 Introduction and Preliminaries

In order to establish several sets of generalized parameter-free sufficient optimality conditions, we begin

with the following discrete minmax fractional programming problem:
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(P) Minimize max
1≤i≤p

fi(x)
gi(x)

subject to G j(x)≤ 0, j ∈ q, Hk(x) = 0, k ∈ r, x ∈ X ,

where F is feasible set of (P), X is an open convex subset of Rn (n-dimensional Euclidean space), fi, gi,

i ∈ p ≡ {1,2, . . . , p}, G j, j ∈ q, and Hk, k ∈ r, are real-valued functions defined on X , and for each

i ∈ p, gi(x)> 0 for all x satisfying the constraints of (P).

We aim at investigating some results on generalized second-order parameter-free sufficient optimality

conditions for (P) based on various second-order (F , β , φ , π, ω, ρ, θ , m) - univexity constraints. We

shall apply two partitioning schemes due to Mond and Weir [3] and Yang [9], in conjunction with the new

classes of generalized second-order invex functions, to formulate and discuss numerous sets of general-

ized second-order parameter-free sufficient optimality conditions for (P). To the best of our knowledge,

all the second-order sufficient optimality results established in this paper are new in the area of discrete

minmax fractional programming, while have a wide range of applications to mathematical programming

including, but limited to, several types of optimization problems.

The rest of this paper is organized as follows: In the remainder of this section, we generalize some

basic definitions and recall some auxiliary results which will be needed in the sequel. In Section 2, we

state and prove various second-order parameter-free sufficient optimality results for (P) using a variety

of generalized (F ,β ,φ ,π,ω,ρ,θ ,m)-sounivexity assumptions. Finally, in Section 3 we summarize our

main results and also point out some further research opportunities arising from the principal problem

investigated in the present paper.

We next present more generalized versions of the new classes of (strictly) (φ ,η ,ρ,θ ,m)-sonvex,

(strictly) (φ ,η ,ρ,θ ,m)-pseudosonvex, and (prestrictly) (φ ,η ,ρ,θ ,m)-quasisonvex functions introduced
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recently in [5]. Here we shall further generalize these functions by considering their univex counterparts.

We shall use the word sounivex for second - order univex.

Let f : X → R be a twice differentiable function.

Definition 1.1. The function f is said to be (strictly) (F , β , φ , π, ω, ρ, θ , m)-sounivex at x∗ if there

exist functions β : X×X →R+ ≡ (0,∞), φ : R→R, ρ : X×X →R, π,ω,θ : X×X →Rn, a sublinear

function F (x,x∗; ·) : Rn→ R, and a positive integer m such that for each x ∈ X (x 6= x∗) and z ∈ Rn,

φ
(

f (x)− f (x∗)
)
(>)≥F

(
x,x∗;β (x,x∗)∇ f (x∗)

)
+β (x,x∗)〈π(x,x∗),∇2 f (x∗)z〉

−1
2
〈ω(x,x∗),∇2 f (x∗)z〉+ρ(x,x∗)‖θ(x,x∗)‖m,

where ‖ · ‖ is a norm on Rn and 〈a,b〉 is the inner product of the vectors a and b.

The function f is said to be (strictly) (F ,β ,φ ,π,ω,ρ,θ ,m)-sounivex on X if it is (strictly) (F ,β ,φ ,π,ω,ρ,θ ,m)-

sounivex at each x∗ ∈ X.

Definition 1.2. The function f is said to be (strictly) (F , β , φ , π, ω, ρ, θ , m)-pseudosounivex at x∗ if

there exist functions β : X ×X → R+, φ : R→ R, ρ : X ×X → R, π,ω,θ : X ×X → Rn, a sublinear

function F (x,x∗; ·) : Rn→ R, and a positive integer m such that for each x ∈ X (x 6= x∗) and z ∈ Rn,

F
(
x,x∗;β (x,x∗)∇ f (x∗)

)
+β (x,x∗)〈π(x,x∗),∇2 f (x∗)z〉− 1

2
〈ω(x,x∗),∇2 f (x∗)z〉

≥ −ρ(x,x∗)‖θ(x,x∗)‖m ⇒ φ
(

f (x)− f (x∗)
)
(>)≥ 0.

The function f is said to be (strictly) (F ,β ,φ ,π,ω,ρ,θ ,m)-pseudosounivex on X if it is (strictly)

(F ,β ,φ ,π,ω,ρ,θ ,m)-pseudosounivex at each x∗ ∈ X.

Definition 1.3. The function f is said to be (prestrictly) (F , β , φ , π, ω, ρ, θ , m)-quasisounivex at x∗

if there exist functions β : X ×X → R+, φ : R→ R, ρ : X ×X → R, π,ω,θ : X ×X → Rn, a sublinear
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function F (x,x∗; ·) : Rn→ R, and a positive integer m such that for each x ∈ X and z ∈ Rn,

φ
(

f (x)− f (x∗)
)
(<)≤ 0 ⇒ F

(
x,x∗;β (x,x∗)∇ f (x∗)

)
+β (x,x∗)〈π(x,x∗),∇2 f (x∗)z〉

− 1
2
〈ω(x,x∗),∇2 f (x∗)z〉 ≤ −ρ(x,x∗)‖θ(x,x∗)‖m.

The function f is said to be (prestrictly) (F ,β ,φ ,π,ω,ρ,θ ,m)-quasisounivex on X if it is (prestrictly)

(F ,β ,φ ,π,ω,ρ,θ ,m)-quasisounivex at each x∗ ∈ X.,

In the proofs of the duality theorems, sometimes it may be more convenient to use certain alternative

but equivalent forms of the above definitions. These are obtained by considering the contrapositive

statements. For example, (F , β , φ , π, ω, ρ, θ , m)-quasisounivexity can be defined in the following

equivalent way:

The function f is said to be (F ,β ,φ ,π,ω,ρ,θ ,m)-quasisounivex at x∗ if there exist functions β : X ×

X → R+, φ : R→ R, ρ : X ×X → R, π,ω,θ : X ×X → Rn, a sublinear function F (x,x∗; ·) : Rn→ R,

and a positive integer m such that for each x ∈ X and z ∈ Rn,

F
(
x,x∗;β (x,x∗)∇ f (x∗)

)
+β (x,x∗)〈π(x,x∗),∇2 f (x∗)z〉

− 1
2
〈ω(x,x∗),∇2 f (x∗)z〉>−ρ(x,x∗)‖θ(x,x∗)‖m ⇒

φ
(

f (x)− f (x∗)
)
> 0.

We observe that the new classes of generalized convex functions specified in Definitions 1.1 - 1.3

contain a variety of special cases that can easily be identified by appropriate choices of F (x,x∗), φ , ρ, θ ,

and m. For example, if let F
(
x,x∗;∇ f (x∗)

)
= β (x,x∗)〈∇ f (x∗),π(x,x∗)〉, where π is a function from

X ×X to Rn, then we obtain the definitions of (strictly) (φ ,π,ρ,θ ,m)-sonvex, (strictly) (φ ,π,ρ,θ ,m)-

pseudosonvex, and (prestrictly) (φ ,π,ρ,θ ,m)-quasisonvex functions introduced recently in [5].

We conclude this section by recalling a set of second-order parameter-free necessary optimality con-

ditions for (P). This result is obtained from Theorem 3.1 of [5] by eliminating the parameter λ ∗ and
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redefining the Lagrange multipliers. We shall use the form and features of this result to formulate our

generalized second-order parameter-free sufficient optimality conditions for (P).

Theorem 1.1. [4] Let x∗ be a normal optimal solution of (P), let λ ∗ = ϕ(x∗)≡

max1≤i≤p fi(x∗)/gi(x∗), and assume that the functions fi, gi, i ∈ p, G j, j ∈ q, and Hk, k ∈ r, are twice

continuously differentiable at x∗. Then for each z∗ ∈C(x∗), there exist u∗ ∈U ≡{u∈Rp : u≥ 0, ∑
p
i=1 ui =

1}, v∗ ∈ Rq
+ ≡ {v ∈ Rq : v≥ 0}, and w∗ ∈ Rr such that

p

∑
i=1

u∗i [D(x∗,u∗)∇ fi(x∗)−N(x∗,u∗)∇gi(x∗)]+
q

∑
j=1

v∗j∇G j(x∗)+
r

∑
k=1

w∗k∇Hk(x∗) = 0,

〈
z∗,
{ p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]+
q

∑
j=1

v∗j∇
2G j(x∗)

+
r

∑
k=1

w∗k∇
2Hk(x∗)

}
z∗
〉
≥ 0,

u∗i [D(x∗,u∗) fi(x∗)−N(x∗,u∗)gi(x∗)] = 0, i ∈ p,

max
1≤i≤p

fi(x∗)
gi(x∗)

=
N(x∗,u∗)
D(x∗,u∗)

,

v∗jG j(x∗) = 0, j ∈ q,

where C(x∗) is the set of all critical directions of (P) at x∗, that is,

C(x∗) = {z ∈ Rn : 〈∇ fi(x∗)−λ∇gi(x∗),z〉= 0, i ∈ A(x∗),

〈∇G j(x∗),z〉 ≤ 0, j ∈ B(x∗),

〈∇Hk(x∗),z〉= 0, k ∈ r},

A(x∗) = { j ∈ p : f j(x∗)/g j(x∗) = max
1≤i≤p

fi(x∗)/gi(x∗)}, B(x∗) = { j ∈ q : G j(x∗) = 0}, N(x∗,u∗) =

∑
p
i=1 u∗i fi(x∗), and D(x∗,u∗) = ∑

p
i=1 u∗i gi(x∗).

In the above theorem, a normal optimal solution refers to an optimal solution at which an appropriate

second-order constraint qualification is satisfied.
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2 Second-Order Sufficient Optimality Conditions

In this section, we discuss several families of second-order parameter-free sufficient optimality results

under various generalized (F ,β ,φ ,π,ω,ρ,θ ,m)-sounivexity hypotheses imposed on certain combina-

tions of the problem functions. This is accomplished by employing a certain partitioning scheme which

was originally proposed in [3] for the purpose of constructing generalized dual problems for nonlinear

programming problems. For this we need some additional notation.

Let {J0,J1, . . . ,JM} and {K0,K1, . . . ,KM} be partitions of the index sets q and r, respectively; thus, Jµ ⊆

q for each µ ∈M∪{0}, Jµ ∩ Jν = /0 for each µ,ν ∈M∪{0} with µ 6= ν , and ∪M
µ=0Jµ = q. Obviously,

similar properties hold for {K0,K1, . . . ,KM}. Moreover, if M1 and M2 are the numbers of the partitioning

sets of q and r, respectively, then M = max{M1,M2} and Jµ = /0 or Kµ = /0 for µ > min{M1,M2}

In addition, we use the real-valued functions ξ →Φi(ξ ,x,v,w), i ∈ p, ξ →

Φ(ξ ,x,u,v,w), and ξ → Λt(ξ ,v,w) defined, for fixed x,u,v, and w, on X as follows:

Φi(ξ ,x,u,v,w) = D(x,u) fi(ξ )−N(x,u)gi(ξ )+ ∑
j∈J0

v jG j(ξ )+ ∑
k∈K0

wkHk(ξ ), i ∈ p,

Φ(ξ ,x,u,v,w) =
p

∑
i=1

ui[D(x,y) fi(ξ )−N(x,u)gi(ξ )]+ ∑
j∈J0

v jG j(ξ )+ ∑
k∈K0

wkHk(ξ ),

Λt(ξ ,v,w) = ∑
j∈Jt

v jG j(ξ )+ ∑
k∈Kt

wkHk(ξ ), t ∈M.

In the proofs of our sufficiency theorems, we shall make frequent use of the following auxiliary result

which provides an alternative expression for the objective function of (P).

Lemma 2.1. [8] For each x ∈ X,

ϕ(x)≡ max
1≤i≤p

fi(x)
gi(x)

= max
u∈U

∑
p
i=1 ui fi(x)

∑
p
i=1 uigi(x)

.

Making use of the sets and functions defined above, we can now formulate our first collection of

generalized second-order parameter-free sufficient optimality results for (P) as follows.
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Theorem 2.1. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, G j, j ∈ q, and Hk, k ∈ r, are twice

differentiable at x∗, and that for each z∗ ∈C(x∗), there exist u∗ ∈U, v∗ ∈ Rq
+, and w∗ ∈ Rr such that

p

∑
i=1

u∗i [D(x∗,u∗)∇ fi(x∗)−N(x∗,u∗)∇gi(x∗)]+
q

∑
j=1

v∗j∇G j(x∗)+
r

∑
k=1

w∗k∇Hk(x∗) = 0, (2.1)

β (x,x∗)
〈

π(x,x∗),
p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]z∗

+
q

∑
j=1

v∗j∇
2G j(x∗)z∗+

r

∑
k=1

w∗k∇
2Hk(x∗)z∗

〉
− 1

2

〈
ω(x,x∗),

p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]z∗

+
q

∑
j=1

v∗j∇
2G j(x∗)z∗+

r

∑
k=1

w∗k∇
2Hk(x∗)z∗

〉
≥ 0 ∀ x ∈ F, (2.2)

max
1≤i≤p

fi(x∗)
gi(x∗)

=
N(x∗,u∗)
D(x∗,u∗)

, (2.3)

v∗jG j(x∗) = 0, j ∈ q. (2.4)

Assume, furthermore, that any one of the following four sets of hypotheses is satisfied:

(a) (i) ξ →Φ(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄ ,π,ω, ρ̄,θ ,m)-quasisounivex at x∗ and φ̄(a)≥

0⇒ a≥ 0;

(ii) for each t ∈M, ξ → Λt(ξ ,v∗,w∗) is strictly (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-pseudosounivex at x∗,

φ̃t is increasing, and φ̃t(0) = 0;

(iii) ρ̄(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F;

(b) (i) ξ →Φ(ξ ,x∗,u∗,v∗,w∗) is (F ,β , φ̄ ,π,ω, ρ̄,θ ,m)-pseudosounivex at x∗ and φ̄(a)≥ 0⇒ a≥

0;

(ii) for each t ∈ M, ξ → Λt(ξ ,v∗,w∗) is (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-quasisounivex at x∗, φ̃t is in-

creasing, and φ̃t(0) = 0;
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(iii) ρ̄(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F;

(c) (i) ξ →Φ(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄ ,π,ω, ρ̄,θ ,m)-quasisounivex at x∗ and φ̄(a)≥

0⇒ a≥ 0;

(ii) for each t ∈ M, ξ → Λt(ξ ,v∗,w∗) is (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-quasisounivex at x∗, φ̃t is in-

creasing, and φ̃t(0) = 0;

(iii) ρ̄(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)> 0 for all x ∈ F;

(d) (i) ξ →Φ(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄ ,π,ω, ρ̄,θ ,m)-quasisounivex at x∗ and φ̄(a)≥

0⇒ a≥ 0;

(ii) for each t ∈M1, ξ → Λt(ξ ,v∗,w∗) is (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-quasisounivex at x∗, for each

t ∈M2 6= /0, ξ → Λt(ξ ,v∗,w∗) is strictly (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-pseudosounivex at x∗, and

for each t ∈M, φ̃t is increasing and φ̃t(0) = 0, where {M1,M2} is a partition of M;

(iii) ρ̄(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P).

(a) : It is clear that (2.1) and (2.2) can be expressed as follows:

p

∑
i=1

u∗i [D(x∗,u∗)∇ fi(x∗)−N(x∗,u∗)∇gi(x∗)]+ ∑
j∈J0

v∗j∇G j(x∗)+

∑
k∈K0

w∗k∇Hk(x∗)+
M

∑
t=1

[
∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
]
= 0, (2.5)
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β (x,x∗)
〈

π(x,x∗),
{ p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

}
z∗
〉

+β (x,x∗)
〈

π(x,x∗),
M

∑
t=1

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2
[
〈

ω(x,x∗),
{ p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]+ ∑
j∈J0

v∗j∇
2G j(x∗)+

∑
k∈K0

w∗k∇
2Hk(x∗)

}
z∗
〉

+
〈

ω(x,x∗),
M

∑
t=1

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉
]≥ 0. (2.6)

Since for each t ∈M,

Λt(x,v∗,w∗) = ∑
j∈Jt

v∗jG j(x)+ ∑
k∈Kt

w∗kHk(x)

≤ 0 (by the feasibility of x)

= ∑
j∈Jt

v∗jG j(x∗)+ ∑
k∈Kt

w∗kHk(x∗) (by (2.4) and the feasibility of x∗)

= Λt(x∗,v∗,w∗),

and hence φ̃t
(
Λt(x,v∗,w∗)−Λt(x∗,v∗,w∗)

)
≤ 0, it follows from (ii) that

F
(

x,x∗;β (x,x∗)
[

∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
])

+β (x,x∗)
〈

π(x,x∗),
[

∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2

〈
ω(x,x∗),

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

<−ρ̃t(x,x∗)‖θ(x,x∗)‖m.
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Summing over t ∈M and using the sublinearity of F (x,x∗; ·), we obtain

F
(

x,x∗;β (x,x∗)
M

∑
t=1

[
∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
])

+β (x,x∗)
〈

π(x,x∗),
M

∑
t=1

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2

〈
ω(x,x∗),

M

∑
t=1

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

<−
M

∑
t=1

ρ̃t(x,x∗)‖θ(x,x∗)‖m. (2.7)

Combining (2.5) - (2.7), and using (iii) we get

F
(

x,x∗;β (x,x∗)
{ p

∑
i=1

u∗i [D(x∗,u∗)∇ fi(x∗)−N(x∗,u∗)∇gi(x∗)]+ ∑
j∈J0

v∗j∇G j(x∗)

+ ∑
k∈K0

w∗k∇Hk(x∗)
})

+β (x,x∗)
〈

π(x,x∗),
{ p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

}
z∗
〉

− 1
2
[
〈

ω(x,x∗),
{ p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]+ ∑
j∈J0

v∗j∇
2G j(x∗)

+ ∑
k∈K0

w∗k∇
2Hk(x∗)

}
z∗
〉
]

>
M

∑
t=1

ρ̃t(x,x∗)‖θ(x,x∗)‖m ≥−ρ̄(x,x∗)‖θ(x,x∗)‖m,
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which by virtue of (i) implies that

φ̄
(
Φ(x,x∗,u∗,v∗,w∗)−Φ(x∗,x∗,u∗,v∗,w∗)

)
≥ 0.

But φ̄(a)≥ 0⇒ a≥ 0, and hence we get

Φ(x,x∗,u∗,v∗,w∗)≥Φ(x∗,x∗,u∗,v∗,w∗) = 0,

where the equality follows from the feasibility of x∗ and definitions of D(x∗,u∗) and D(x∗,u∗). Since

x ∈ F, the above inequality reduces to

p

∑
i=1

u∗i [D(x∗,u∗) fi(x)−N(x∗,u∗)gi(x)]≥ 0. (2.8)

Now using (2.3), (2.8), and Lemma 2.1, we see that

ϕ(x∗) =
N(x∗,u∗)
D(x∗,u∗)

≤ ∑
p
i=1 u∗i fi(x)

∑
p
i=1 u∗i gi(x)

≤max
u∈U

∑
p
i=1 ui fi(x)

∑
p
i=1 uigi(x)

= ϕ(x).

Since x ∈ F was arbitrary, we conclude from this inequality that x∗ is an optimal solution of (P).

(b) : Proceeding as in the proof of part (a), we see that (ii) leads to the following inequality:

F
(

x,x∗;β (x,x∗)
M

∑
t=1

[
∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
)

+β (x,x∗)
〈

π(x,x∗),
M

∑
t=1

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2

〈
z∗,

M

∑
t=1

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉
≤−

M

∑
t=1

ρ̃t(x,x∗)‖θ(x,x∗)‖m.
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Combining this inequality with (2.5) and (2.6), and using (iii) we get

F
(

x,x∗;β (x,x∗)
{ p

∑
i=1

u∗i [D(x∗,u∗)∇ fi(x∗)−N(x∗,u∗)∇gi(x∗)]+ ∑
j∈J0

v∗j∇G j(x∗)

+ ∑
k∈K0

w∗k∇Hk(x∗)
})

+β (x,x∗)
〈

π(x,x∗),
{ p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

}
z∗
〉

− 1
2

〈
ω(x,x∗),

{ p

∑
i=1

u∗i [D(x∗,u∗)∇2 fi(x∗)−N(x∗,u∗)∇2gi(x∗)]

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

}
z∗
〉

≥
M

∑
t=1

ρ̃t(x,x∗)‖θ(x,x∗)‖m ≥−ρ̄(x,x∗)‖θ(x,x∗)‖m,

which by virtue of (i) implies that

φ̄
(
Φ(x,x∗,u∗,v∗,w∗)−Φ(x∗,x∗,u∗,v∗,w∗)

)
≥ 0.

The rest of the proof is identical to that of part (a).

(c) and (d) : The proofs are similar to those of parts (a) and (b).

Theorem 2.2. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, G j, j ∈ q, and Hk, k ∈ r, are twice

differentiable at x∗, and that for each z∗ ∈ C(x∗), there exist u∗ ∈U, v∗ ∈ Rq
+, and w∗ ∈ Rr such that

(2.1) - (2.4) and the following relations hold:

u∗i [D(x∗,u∗) fi(x∗)−N(x∗,u∗)gi(x∗)] = 0, i ∈ p. (2.9)

Assume, furthermore, that any one of the following seven sets of hypotheses is satisfied:

(a) (i) for each i∈ I+≡{i∈ p}, ξ→Φi(ξ ,x∗,u∗,v∗,w∗) is (F ,β , φ̄i,π,ω, ρ̄i,θ ,m)-pseudosounivex

at x∗, φ̄i is strictly increasing, and φ̄i(0) = 0;
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(ii) for each t ∈ M, ξ → Λt(ξ ,v∗,w∗) is (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-quasisounivex at x∗, φ̃t is in-

creasing, and φ̃t(0) = 0;

(iii) ∑i∈I+ u∗i ρ̄i(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F;

(b) (i) for each i ∈ I+, ξ →Φi(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄i,π,ω, ρ̄i,

θ ,m)-quasisounivex at x∗, φ̄i is strictly increasing, and φ̄i(0) = 0;

(ii) for each t ∈M, ξ → Λt(ξ ,v∗,w∗) is strictly (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-pseudosounivex at x∗,

φ̃t is increasing, and φ̃t(0) = 0;

(iii) ∑i∈I+ u∗i ρ̄i(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F;

(c) (i) for each i ∈ I+, ξ →Φi(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄i,π,ω, ρ̄i,

θ ,m)-quasisounivex at x∗, φ̄i is strictly increasing, and φ̄i(0) = 0;

(ii) for each t ∈ M, ξ → Λt(ξ ,v∗,w∗) is (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-quasisounivex at x∗, φ̃t is in-

creasing, and φ̃t(0) = 0;

(iii) ∑i∈I+ u∗i ρ̄i(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)> 0 for all x ∈ F;

(d) (i) for each i ∈ I1+, ξ → Φi(ξ ,x∗,u∗,v∗,w∗) is (F ,β , φ̄i,π,ω, ρ̄i,θ ,m)-pseudosounivex at x∗,

for each i∈ I2+, ξ→Φi(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄i,π,ω, ρ̄i,θ ,m)-quasisounivex

at x∗, and for each i ∈ I+, φ̄i is strictly increasing and φ̄i(0) = 0, where {I1+, I2+} is a parti-

tion of I+;

(ii) for each t ∈M, ξ → Λt(ξ ,v∗,w∗) is strictly (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-pseudosounivex at x∗,

φ̃t is increasing, and φ̃t(0) = 0;

(iii) ∑i∈I+ u∗i ρ̄i(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F;
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(e) (i) for each i ∈ I1+ 6= /0, ξ → Φi(ξ ,x∗,u∗,v∗,w∗) is (F ,β , φ̄i,π,ω, ρ̄i,θ ,m)-pseudosounivex at

x∗, for each i∈ I2+, ξ→Φi(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄i,π,ω, ρ̄i,θ ,m)-quasisounivex

at x∗, and for each i ∈ I+, φ̄i is strictly increasing and φ̄i(0) = 0, where {I1+, I2+} is a parti-

tion of I+;

(ii) for each t ∈ M, ξ → Λt(ξ ,v∗,w∗) is (F ,β , φ̃t , ρ̃t ,π,ω,θ ,m)-quasisounivex at x∗, φ̃t is in-

creasing, and φ̃t(0) = 0;

(iii) ∑i∈I+ u∗i ρ̄i(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F;

(f) (i) for each i ∈ I+, ξ →Φi(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄i,π,ω, ρ̄i,

θ ,m)-quasisounivex at x∗, φ̄i is strictly increasing, and φ̄i(0) = 0;

(ii) for each t ∈M1 6= /0, ξ → Λt(ξ ,v∗,w∗) is strictly (F , β , φ̄t , π, ω, ρ̃t , θ , m)-pseudosounivex

at x∗, for each t ∈M2, ξ →Λt(ξ ,v∗,w∗) is (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-quasisounivex at x∗, and

for each t ∈M, φ̃t is increasing and φ̃t(0) = 0, where {M1,M2} is a partition of M;

(iii) ∑i∈I+ u∗i ρ̄i(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F;

(g) (i) for each i ∈ I1+, ξ → Φi(ξ ,x∗,u∗,v∗,w∗) is (F ,β , φ̄i, ρ̄i,π,ω,θ ,m)-pseudosounivex at x∗,

for each i∈ I2+, ξ→Φi(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β , φ̄i,π,ω, ρ̄i,θ ,m)-quasisounivex

at x∗, and for each i ∈ I+, φ̄i is strictly increasing and φ̄i(0) = 0, where {I1+, I2+} is a parti-

tion of I+;

(ii) for each t ∈M1, ξ → Λt(ξ ,v∗,w∗) is strictly (F , β , φ̃t , π, ω, ρ̃t , θ , m)-pseudosounivex at

x∗, for each t ∈ M2, ξ → Λt(ξ ,v∗,w∗) is (F ,β , φ̃t ,π,ω, ρ̃t ,θ ,m)-quasisounivex at x∗, and

for each t ∈M, φ̃t is increasing and φ̃t(0) = 0, where {M1,M2} is a partition of M;

(iii) ∑i∈I+ u∗i ρ̄i(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)≥ 0 for all x ∈ F;

(iv) I1+ 6= /0, M1 6= /0, or ∑i∈I+ u∗i ρ̄i(x,x∗)+∑
M
t=1 ρ̃t(x,x∗)> 0.
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Then x∗ is an optimal solution of (P).

Proof. (a) : Suppose to the contrary that x∗ is not an optimal solution of (P). Then there is a feasible

solution x̄ of (P) such that ϕ(x̄)< ϕ(x∗) and hence it follows that

D(x̄,u∗) fi(x̄)−N(x̄,u∗)gi(x̄)< 0 for each i ∈ p.

Keeping in mind that v∗ ≥ 0 and using this strict inequality, we see that

Φi(x̄,x∗,v∗,w∗) = D(x̄,u∗) fi(x̄)−N(x̄,u∗)gi(x̄)+ ∑
j∈J0

v∗jG j(x̄)+ ∑
k∈K0

w∗kHk(x̄)

≤ D(x̄,u∗) fi(x̄)−N(x̄,u∗)gi(x̄) (by the feasibility of x̄)

< 0

= D(x̄,u∗) fi(x∗)−N(x̄,u∗)gi(x∗)+ ∑
j∈J0

v∗jG j(x∗)+ ∑
k∈K0

w∗kHk(x∗)

(by (2.4), (2.9), and the feasibility of x∗)

= Φi(x∗,x∗,v∗,w∗),

and so using the properties of the function φ̄i, we get

φ̄i
(
Φi(x̄,x∗,v∗,w∗)−Φi(x∗,x∗,v∗,w∗)

)
< 0,

which in view of (i) implies that for each i ∈ I+,

F
(

x,x∗;β (x,x∗)
{

D(x̄,u∗)∇ fi(x∗)−N(x̄,u∗)∇gi(x∗)

+ ∑
j∈J0

v∗j∇G j(x∗)+ ∑
k∈K0

w∗k∇Hk(x∗)
})

+β (x,x∗)
〈

π(x̄,x∗),
[
D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

]
z
〉

− 1
2

〈
ω(x,x∗),

[
D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)+ ∑

j∈J0

v∗j∇
2G j(x∗)

+ ∑
k∈K0

w∗k∇
2Hk(x∗)

]
z
〉
<−ρ̄i(x,x∗)‖θ(x̄,x∗)‖m.
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Since u∗ ≥ 0, u∗i = 0 for each i ∈ p\I+, ∑
p
i=1 u∗i = 1, and F (x,x∗; ·) is sublinear, the above inequalities

yield

F
(

x,x∗;β (x,x∗)
{ p

∑
i=1

u∗i [D(x̄,u∗)∇ fi(x∗)−N(x̄,u∗)∇gi(x∗)]

+ ∑
j∈J0

v∗j∇G j(x∗)+ ∑
k∈K0

w∗k∇Hk(x∗)
})

+β (x,x∗)
〈

π(x̄,x∗),
{ p

∑
i=1

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

}
z∗
〉

− 1
2

〈
ω(x,x∗),

{ p

∑
i=1

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

}
z∗
〉
<−∑

i∈I+

u∗i ρ̄i(x,x∗)‖θ(x̄,x∗)‖m. (2.10)

As seen in the proof of Theorem 2.1, our assumptions in (ii) lead to

F
(

x,x∗;β (x,x∗)
M

∑
t=1

[
∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
])

+β (x,x∗)
〈

π(x̄,x∗),
M

∑
t=1

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2

〈
ω(x,x∗),

M

∑
t=1

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

≤−
M

∑
t=1

ρ̃t(x,x∗)‖θ(x̄,x∗)‖m,
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which when combined with (2.5) and (2.6) results in

F
(

x,x∗;β (x,x∗)
{ p

∑
i=1

u∗i [D(x̄,u∗)∇ fi(x∗)−N(x̄,u∗)∇gi(x∗)]

+ ∑
j∈J0

v∗j∇G j(x∗)+ ∑
k∈K0

w∗k∇Hk(x∗)
})

+β (x,x∗)
〈

π(x̄,x∗),
[ p

∑
i=1

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2

〈
ω(x,x∗),

[ p

∑
i=1

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+ ∑
j∈J0

v∗j∇
2G j(x∗)+ ∑

k∈K0

w∗k∇
2Hk(x∗)

]
z∗
〉
≥

M

∑
t=1

ρ̃t(x,x∗)‖θ(x̄,x∗)‖m.

In view of (iii), this inequality contradicts (2.10). Hence, x∗ is an optimal solution of (P).

(b) - (g) : The proofs are similar to that of part (a).

In the next theorem, we present another collection of sufficient optimality results which are somewhat

different from those stated in Theorems 2.1 and 2.2. These results are formulated by utilizing a partition

of p in addition to those of q and r, and by placing appropriate generalized (F ,β ,φ ,π,ω,ρ,θ ,m)-

sounivexity requirements on certain combinations of the problem functions.

Let {I0, I1, . . . , I`} be a partition of p such that L = {0,1,2, . . . , `} ⊂M = {0,1, . . . ,M}, and let the

real-valued function ξ →Πt(ξ ,x,u,v,w) be defined, for fixed u,v,w by

Πt(ξ ,x,u,v,w) = ∑
i∈It

ui[D(x,u) fi(ξ )−N(x,u)gi(ξ )]+ ∑
j∈Jt

v jG j(ξ )

+ ∑
k∈Kt

wkHk(ξ ), t ∈M.

Theorem 2.3. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, G j, j ∈ q, and Hk, k ∈ r, are twice

differentiable at x∗, and that for each z∗ ∈ C(x∗), there exist u∗ ∈U, v∗ ∈ Rq
+, and w∗ ∈ Rr such that

(2.1) - (2.4) and (2.9) hold. Assume, furthermore, that any one of the following seven sets of hypotheses

is satisfied:
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(a) (i) for each t ∈L , ξ →Πt(ξ ,x∗,u∗,v∗,w∗) is strictly (F ,β , φ̄t ,π,ω,ρt ,θ ,m)- pseudosounivex

at x∗, φt is increasing, and φt(0) = 0;

(ii) for each t ∈M \L , ξ → Λt(ξ ,v∗,w∗) is (F , β , φt , π, ω, ρt , θ , m)-quasisounivex at x∗, φt

is increasing, and φt(0) = 0;

(iii) ∑t∈M ρt(x,x∗)≥ 0 for all x ∈ F;

(b) (i) for each t ∈L , ξ →Πt(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β ,φt ,π,ω,ρt ,θ ,m)-

quasisounivex at x∗, φt is increasing, and φt(0) = 0;

(ii) for each t ∈M \L , ξ →Λt(ξ ,v∗,w∗) is strictly (F ,β ,φt ,π,ω,ρt ,θ ,m)-pseudosounivex at

x∗, φt is increasing, and φt(0) = 0;

(iii) ∑t∈M ρt(x,x∗)≥ 0 for all x ∈ F;

(c) (i) for each t ∈L , ξ →Πt(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β ,φt ,π,ω,ρt ,θ ,m)-

quasisounivex at x∗, φt is increasing, and φt(0) = 0;

(ii) for each t ∈M \L , ξ → Λt(ξ ,v∗,w∗) is (F ,β ,φt ,π,ω,ρt ,θ ,m)-quasisounivex at x∗, φt is

increasing, and φt(0) = 0;

(iii) ∑t∈M ρt(x,x∗)> 0 for all x ∈ F;

(d) (i) for each t ∈L1, ξ →Πt(ξ ,x∗,u∗,v∗,w∗) is strictly (F ,β ,φt ,π,ω,ρt ,θ ,m)-

pseudosounivex at x∗, for each t ∈L2, ξ→Πt(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β ,φt ,π,ω,ρt ,θ ,m)-

quasisounivex at x∗, and for each t ∈L , φt is increasing and φt(0) = 0, where {L1,L2} is

a partition of L ;

(ii) for each t ∈M \L , ξ → Λt(ξ ,v∗,w∗) is strictly (F ,β ,φt ,π,ω,ρt ,θ)-pseudosounivex at

x∗, φt is increasing, and φt(0) = 0;
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(iii) ∑t∈M ρt(x,x∗)≥ 0 for all x ∈ F;

(e) (i) for each t ∈L1 6= /0, ξ →Πt(ξ ,x∗,u∗,v∗,w∗) is strictly (F ,β ,φt ,π,ω,ρt ,θ ,m)-

pseudosounivex at x∗, for each t ∈L2, ξ→Πt(ξ ,u∗,v∗,w∗,λ ∗) is prestrictly (F ,β ,φt ,π,ω,ρt ,θ ,m)-

quasisounivex at x∗, and for each t ∈L , φt is increasing and φt(0) = 0, where {L1,L2} is

a partition of L ;

(ii) for each t ∈M \L , ξ → Λt(ξ ,v∗,w∗) is (F ,β ,φt ,ρt ,θ ,m)-quasisounivex at x∗, φt is in-

creasing, and φt(0) = 0;

(iii) ∑t∈M ρt(x,x∗)≥ 0 for all x ∈ F;

(f) (i) for each t ∈L , ξ→Πt(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β ,φt ,π,ω,ρt ,θ ,m) -quasisounivex

at x∗, φt is increasing, and φt(0) = 0;

(ii) for each t ∈ (M \L )1 6= /0, ξ → Λt(ξ ,v∗,w∗) is strictly (F , β , φt , π, ω, ρt , θ , m) -

pseudosounivex at x∗, for each t ∈ (M \L )2, ξ → Λt(ξ ,v∗,w∗) is (F ,β ,φt ,π,ω,ρt ,θ ,m)-

quasisounivex at x∗, and for each t ∈ L , φt is increasing and φt(0) = 0, where {(M \

L )1,(M \L )2} is a partition of M \L ;

(iii) ∑t∈M ρt(x,x∗)≥ 0 for all x ∈ F;

(g) (i) for each t ∈L1, ξ →Πt(ξ ,x∗,u∗,v∗,w∗) is (F ,β ,φt ,π,ω,ρt ,θ ,m)-

pseudosounivex at x∗, for each t ∈L2, ξ→Πt(ξ ,x∗,u∗,v∗,w∗) is prestrictly (F ,β ,φt ,π,ω,ρt ,θ ,m)-

quasisounivex at x∗, and for each t ∈L , φt is increasing and φt(0) = 0, where {L1,L2} is

a partition of L ;

(ii) for each t ∈ (M \L )1, ξ→Λt(ξ ,v∗,w∗) is strictly (F , β , φt , π, ω, ρt , θ , m)-pseudosounivex

at x∗, for each t ∈ (M \L )2, ξ →Λt(ξ ,v∗,w∗) is (F ,β ,φt ,π,ω,ρt ,θ ,m)-quasisounivex at
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x∗, and for each t ∈M \L , φt is increasing and φt(0) = 0, where {(M \L )1,(M \L )2}

is a partition of M \L ;

(iii) ∑t∈M ρt(x,x∗)= 0 for all x ∈ F;

(iv) L1 6= /0, (M \L )1 6= /0, or ∑t∈M ρt(x,x∗)> 0.

Then x∗ is an optimal solution of (P).

Proof. (a): Suppose to the contrary that x∗ is not an optimal solution of (P). As seen in the proof of

Theorem 2.2, this supposition leads to the inequalities

D(x̄,u∗) fi(x̄)−N(x̄,u∗)gi(x̄)< 0, i ∈ p,

for some x̄ ∈ F. Since u∗ ≥ 0, we see that for each t ∈L ,

∑
i∈It

u∗i [D(x̄,u∗) fi(x̄)−N(x̄,u∗)gi(x̄)]≤ 0. (2.11)

Now using this inequality, we see that

Πt(x̄,x∗,u∗,v∗,w∗) = ∑
i∈It

u∗i [D(x̄,u∗) fi(x̄)−N(x̄,u∗)gi(x̄)]

+ ∑
j∈Jt

v∗jG j(x̄)+ ∑
k∈Kt

w∗kHk(x̄)

≤∑
i∈It

u∗i [D(x̄,u∗) fi(x̄)−N(x̄,u∗)gi(x̄)] (by the feasibility of x̄)

≤ 0 (by (2.11))

= ∑
i∈It

u∗i [D(x̄,u∗) fi(x∗)−N(x̄,u∗)gi(x∗)]+ ∑
j∈Jt

v∗jG j(x∗)

+ ∑
k∈Kt

w∗kHk(x∗) (by (2.4), (2.9), and the feasibility of x∗)

= Πt(x∗,x∗,u∗,v∗,w∗),

and hence

φt
(
Πt(x̄,x∗,u∗,v∗,w∗)−Πt(x∗,x∗,u∗,v∗,w∗)

)
≤ 0,
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which in view of (i) implies that

F
(

x,x∗;β (x,x∗)
{

∑
i∈It

u∗i [D(x̄,u∗)∇ fi(x∗)−N(x̄,u∗)∇gi(x∗)]

+ ∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
})

+β (x,x∗)
〈

π(x̄,x∗),
[
∑
i∈It

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+ ∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2

〈
ω(x,x∗),

[
∑
i∈It

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+ ∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

<−ρt(x̄,x∗)‖θ(x̄,x∗)‖m.

Summing over t ∈L and using the sublinearity of F (x,x∗; ·), we obtain

F
(

x,x∗;β (x,x∗)
{ p

∑
i=1

u∗i [D(x̄,u∗)∇ fi(x∗)−N(x̄,u∗)∇gi(x∗)]

+ ∑
t∈L

[
∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
]})

+β (x,x∗)
〈

π(x̄,x∗), ∑
t∈L

{
∑
i∈It

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+ ∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

}
z∗
〉

− 1
2

〈
ω(x,x∗), ∑

t∈L

{
∑
i∈It

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+ ∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

}
z∗
〉

≤− ∑
t∈L

ρt(x̄,x∗)‖θ(x̄,x∗)‖m. (2.12)

Proceeding as in the proof of Theorem 2.1, we obtain for each t ∈M \L ,

φt
(
Λt(x̄,v∗,w∗)−Λt(x∗,v∗,w∗)

)
≤ 0,
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which in view of (ii) implies that

F
(

x,x∗;β (x,x∗)
[

∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
])

+β (x,x∗)
〈

π(x̄,x∗),
[

∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2

〈
ω(x,x∗),

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉
≤−ρt(x̄,x∗)‖θ(x̄,x∗)‖m.

Summing over t ∈M \L and using the sublinearity of F (x,x∗; ·), we get

F
(

x,x∗;β (x,x∗)
[

∑
t∈M \L

[
∑
j∈Jt

v∗j∇G j(x∗)+ ∑
k∈Kt

w∗k∇Hk(x∗)
])

+β (x,x∗)
〈

π(x̄,x∗), ∑
t∈M \L

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

− 1
2

〈
ω(x,x∗), ∑

t∈M \L

[
∑
j∈Jt

v∗j∇
2G j(x∗)+ ∑

k∈Kt

w∗k∇
2Hk(x∗)

]
z∗
〉

<− ∑
t∈M \L

ρt(x̄,x∗)‖θ(x̄,x∗)‖m. (2.13)

Now combining (2.12) and (2.13) and using (iii), we obtain

F
(

x,x∗;β (x,x∗)
{ p

∑
i=1

u∗i [D(x̄,u∗)∇ fi(x∗)−N(x̄,u∗)∇gi(x∗)]

+
q

∑
j=1

v∗j∇G j(x∗)+
r

∑
k=1

w∗k∇Hk(x∗)
})

+β (x,x∗)
〈

π(x̄,x∗),
{ p

∑
i=1

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+
q

∑
j=1

v∗j∇
2G j(x∗)+

r

∑
k=1

w∗k∇
2Hk(x∗)

}
z∗
〉

− 1
2

〈
ω(x,x∗),

{ p

∑
i=1

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+
q

∑
j=1

v∗j∇
2G j(x∗)+

r

∑
k=1

w∗k∇
2Hk(x∗)

}
z∗
〉
<− ∑

t∈M
ρt(x̄,x∗)‖θ(x̄,x∗)‖m ≤ 0. (2.14)

Now multiplying (2.1) by β (x,x∗), applying the sublinear function F (x,x∗; ·) to both sides of the result-
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ing equation, and then adding the equation to (2.2), we get

F
(

x,x∗;β (x,x∗)
{ p

∑
i=1

u∗i [D(x̄,u∗)∇ fi(x∗)−N(x̄,u∗)∇gi(x∗)]

+
q

∑
j=1

v∗j∇G j(x∗)+
r

∑
k=1

w∗k∇Hk(x∗)
})

+β (x,x∗)
〈

π(x̄,x∗),
{ p

∑
i=1

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+
q

∑
j=1

v∗j∇
2G j(x∗)+

r

∑
k=1

w∗k∇
2Hk(x∗)

}
z∗
〉

− 1
2

〈
ω(x,x∗),

{ p

∑
i=1

u∗i [D(x̄,u∗)∇2 fi(x∗)−N(x̄,u∗)∇2gi(x∗)]

+
q

∑
j=1

v∗j∇
2G j(x∗)+

r

∑
k=1

w∗k∇
2Hk(x∗)

}
z∗
〉
≥ 0,

which contradicts (2.14). Therefore, we conclude that x∗ is an optimal solution of (P).

(b) - (g) : The proofs are similar to that of part (a).

3 Concluding Remarks

Remark 3.1. Based on a Dinkelbach-type [1] parametric approach, we have in this paper established

numerous sets of generalized second-order sufficient optimality criteria for a discrete minmax fractional

programming problem using a variety of generalized (F ,β ,φ ,π,ω,ρ,θ ,m)- sounivexity assumptions.

These optimality results can be used for constructing various duality models as well as for developing

new algorithms for the numerical solution of minmax fractional programming problems. Furthermore,

main results can be used, for example, employing similar techniques, one can investigate the second-

order sufficient optimality aspects of the following semiinfinite minmax fractional programming prob-

lem:

Minimize max
1≤i≤p

fi(x)
gi(x)
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subject to

G j(x, t)≤ 0 for all t ∈ Tj, j ∈ q; Hk(x,s) = 0 for all s ∈ Sk, k ∈ r; x ∈ X ,

where X , fi, and gi, i ∈ p, are as defined in the description of (P), for each j ∈ q and k ∈ r, Tj and Sk are

compact subsets of complete metric spaces, for each j ∈ q, ξ →G j(ξ , t) is a real-valued function defined

on X for all t ∈ Tj, for each k ∈ r, ξ → Hk(ξ ,s) is a real-valued function defined on X for all s ∈ Sk,

for each j ∈ q and k ∈ r, t → G j(x, t) and s→ Hk(x,s) are continuous real-valued functions defined,

respectively, on Tj and Sk for all x ∈ X .
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