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A Stochastic Disease Models for Zika -
Exploring the Probability of Pathogen

Persistence
Donald D. Porchia∗

Abstract

A stochastic epidemic model for the transmission dynamics of Zika is formu-

lated as a continuous-time Markov chain. The stochastic model is derived from a

deterministic compartmental disease model based on a coupled system of ordinary

differential equations. The disease dynamics of the deterministic and stochastic

disease models are compared in order to determine the effect of stochasticity on

the transmission dynamics. The probability of disease extinction as well as that of

a epidemic are numerically simulated from the stochastic model and compared to

a multi-type Bienamye-Galton-Watson branching process approximation. Analyt-

ical and numerical results show significant differences between the stochastic and

deterministic model predictions.

1 Introduction

The Zika virus (ZIKV) was first discovered in the blood of a rhesus monkey captured in the Zika

forests of Uganda at the Yellow Fever Research Institute in 1947 [10]. The virus is named after
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the forest where it it was first discovered. The following year, the virus was found in the Aedes

africanus mosquito, [11]. By 1952, antibodies against Zika were found in the sera of individuals

in Uganda and the republic of Tanzania [25]. In the following years, successive serosurveys

found evidence of ZIKV antibodies in the human populations of Africa, India and Southeast

Asia, [12, 18, 21, 25, 26, 27].

From the 1960s though the 1980s, a small number of human cases were detected along with

widespread exposure to the virus [28]. The first confirmed transmission of the disease in humans

was discovered when a researcher working with the virus was infected in 1964. Zika was also

detected in mosquitoes in Asia, Indonesia, India, and Pakistan [23].

The disease was largely ignored until the first large scale outbreak in humans occurred on the

pacific island of Yap in the Federated States of Micronesia in 2007. Until the 2007 Yap outbreak,

only 14 cases had been reported world wide. After the Yap outbreak, it is estimated that 73%

of the island’s population has been infected. It is possible that regular exposure combined with

mild or asymptomatic infections in Africa and Asia have prevented the large outbreaks seen on

Yap or in the Americas [28].

In 2008, the first case of Zika spread by sexual transmission was detected. This is the first

documented case of sexual transmission of a disease typically spread by insects [15]. In 2013

- 2014, four outbreaks occurred in French Polynesia, Easter Island, the Cook Islands and New

Caledonia [24]. In the aftermath of these outbreaks, a possible association was found between

Zika and congenital malformations such as microcephaly as well as severe neurological and

autoimmune complications such as GuillainBarr syndrome [28].

The Zika virus (ZIKV) is a vector-borne disease transmitted to humans through the bites

of infected mosquitoes of the genus Aedes. It can also be transmitted among humans by sexual

contact, blood transfusions or vertically from mother to child. Although first discovered in 1947,
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there were no large scale outbreaks of the disease until the 2008 outbreak in Micronesia. Until

then, the symptoms of Zika where thought to be mild. It was only afterward that a correlation

was discovered between Zika infection during pregnancy and microcephaly as well as other

severe neurological conditions such as Guillian-Barre syndrome. Due to this fact and the large

scale nature of recent outbreaks the World Health Organization has declared that the Zika virus

and its associated complications are a public health emergency of international concern.

The organization of this paper is as follows: Section 2, we formulate the deterministic model;

in Section 3 we present the deterministic model analysis; in Section 4, we formulate the stochas-

tic model as a continuous time Markov chain (CTMC); in section 5, we discuss the branching

process approximation to the CTMC. Section 6 concludes our work and provides a discussion.

2 The Deterministic Model

Zika is unique in that it is a vector transmitted disease that also allows for transmission by

sexual contact. We will describe the disease transmission by a coupled system of differential

equations. The host population will be described by a SIR model in which each individual may

be classified as being in one of three epidemiological states at time t: Susceptible Sh(t), Infected

Ih(t), or Removed Rh(t). The total population is defined as Nh(t) = Sh(t)+ Ih(t)+Rh(t). The

vector population will be described by a system in which each mosquito is in only one of two

epidemiological states either susceptible Sv(t) or infected Iv(t). The total mosquito populations

is defined as Nv(t)= Sv(t)+Iv(t). Since we are interested in the probability of a epidemic starting

and not the long term dynamics of the disease, we will assume that the birth and death rate for

the human and mosquito population are in equilibrium. Hence the host and vector populations

are constant.

Due to the short lifespan of the vector we will not consider recovery for the vector and assume

the mosquito stays infected until death. Humans will recover from the disease at the rate, µh. The
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contact rate from mosquitoes to susceptible humans βhv is defined as the product of the number

of bites received by a human per unit time (bite rate) and the probability that the bite could

transmit the infection, ρhv. Thus, βhv = bρhv Zika can also be transmitted through sexual contact

so let βhh be the transmission rate from infected human to susceptible human. Additionally, as

a vector borne virus, infected humans transmit the disease to susceptible mosquitoes at a rate

βvh = bρvh, where b is the bite rate and ρvh is the probability of a infected human transmitting

the disease to a susceptible mosquito upon being bitten.

Using the above definitions, we have that a susceptible human receives βhv mosquito bites

capable of transmitting the disease per unit time. The fraction of those bites that come from a

infected mosquito is given by Iv
Nv

. Therefore the number of new infective humans per unit time

from vector transmission is

βhvSh
Iv

Nv
.

Similarly, the number of new infective mosquitoes per unit time from host transmission is given

by

βvhSv
Ih

Nh
.

However, Zika is the first example of a vector borne disease with a direct transmission route.

Thus, the number of new infected humans per unit time from sexual contact is given by

βhhSh
Ih

Nh
.

The variables are integer values since they describe the population size of each compartment.

However, if we assume the size is sufficiently large then we can treat them as continuously

valued.

The ShIhRh−SvIv model description is given by the following system of equations,
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S′h(t) = µhNh−µhSh(t)−βhhSh(t)
Ih(t)
Nh
−βhvSh(t)

Iv(t)
Nv

I′h(t) = βhhSh(t)
Ih(t)
Nh

+βhvSh(t)
Iv(t)
Nv
− (γh +µh)Ih(t)

R′h(t) = γhIh(t)−µhRh(t)

S′v(t) = µvNv−µvSv(t)−βvhSv(t)
Ih(t)
Nh

I′v(t) = βvhSv(t)
Ih(t)
Nh
−µvIv(t) (2.1)

Adding the first three equations, we have that N′h(t) = 0 and Nh(t) is a constant, which is to be

expected since we built the model assuming that the number of births was equal to the number

of deaths. Similarly, Nv(t) is a constant for the vector populations as well.

Figure 1: Schematic representation of the Zika epidemic model

3 The Deterministic Model Analysis

3.1 Existence and Stability of Model Equilibria

We find the equilibrium points by setting the right hand side of the model (2.1) equal to zero.

In other words, assume that S′h = 0, I′h = 0, R′h = 0, S′v = 0, and I′v = 0 then solve the following

system of equations
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Parameter Description Range Value Reference

α Mosquito biting rate.
(Number of bites per
mosquito per day)

0.3 - 1.0 0.5 [1, 16]

βhh Transmission rate from
symptomatically infected
humans to susceptible hu-
mans. (Per day)

0.0010.10 0.05 Assumed

ρhv Transmission probabil-
ity from an infectious
mosquito to a suscep-
tible human per bite.
(Dimensionless)

0.1 - 0.75 0.4 [1, 16]

ρvh Transmission probability
from a symptomatically
infected human to a
susceptible mosquito per
bite. (Dimensionless)

0.30.75 0.5 [9, 16]

1/µh lifespan in the human
population (days)

- (365)(76) reference

1/µv lifespan in the vector pop-
ulation (days)

4 - 35 14 [1, 9, 16]

Nh Population of humans range 1000000 Assumed

Nratio =
Nv
Nh

Average ratio of
mosquitoes to humans.
(mosquitoes per human)

1 - 10 5 [22]

Nv Population of mosquitoes - 5000000 calculated

1/γh Duration of human infec-
tion (days)

2 - 7 days 5 [8, 16]

Table 1: Parameter description and ranges for the Zika epidemic model
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µhNh−µhSh(t)−βhhSh(t)
Ih(t)
Nh
−βhvSh(t)

Iv(t)
Nv

= 0

βhhSh(t)
Ih(t)
Nh

+βhvSh(t)
Iv(t)
Nv
− (γh +µh)Ih(t) = 0

γhIh(t)−µhRh(t) = 0

µvNv−µvSv(t)−βvhSv(t)
Ih(t)
Nh

= 0

βvhSv(t)
Ih(t)
Nh
−µvIv(t) = 0 (3.1)

The Zika free equilibrium occurs when Ih = Iv = 0 and is given by

(So
h, I

o
h ,R

o
h,S

o
v , I

o
v ) = (Nh,0,0,Nv,0).

The existence of the endemic equilibrium, Ih 6= 0, Iv 6= 0, was shown in [17].

The basic reproduction number, R0 is defined to be the number of individuals that one infec-

tive will infect in a completely susceptible population. In other words, the number of secondary

cases caused by one infected individual assuming a completely susceptible population.

We may now calculate the basic reproduction number using the next generation method as

described by Van den Driessche and Watmough in [14].

N=

 βhh
γh+µh

Nhβhv
Nvµv

Nvβvh
Nh(γh+µh)

0


Then the basic reproduction number is the spectral radius of the next generation matrix which

is given by

Ro =
βhh

2(γh +µh)
+

1
2

√(
βhh

γh +µh

)2

+
4βhvβvh

µv(γh +µh)
(3.2)

=
Rh +

√
R2

h +4R2
v

2
(3.3)
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where Rh =
βhh

γh+µh
is the reproduction number assuming only infections due to sexual transmis-

sion and Rv =
√

βhvβvh
µv(γh+µh)

is the reproduction number assuming only vector borne infections.

From [14], we may apply Theorem 2 to establish the following result,

Theorem 3.1 The Zika free equilibrium of model (2.1) is locally asymptotically stable if Ro ≤ 1

and unstable if Ro¿1.

4 Stochastic Epidemic Model

Stochastic modeling allows the random nature of the disease dynamics to be expressed in the

model itself. When formulating a discrete or continuous Markov chain, instead of approximating

the epidemiological classes as a continuum they are treated naturally as discrete positive integers.

The transmission and the recovery of the disease is defined or governed as a probability, so there

is always a chance that an individual will not infect another or that they will recover from the

disease. That is, the disease can die out and there can be no further infection until the disease

is reintroduced into the population. Whereas in a deterministic model, the disease can become

infinitesimally small only to grow again. This is an artifact of the continuum approximation. The

ability of the disease to become stochastically extinct is one of the major differences between the

deterministic and stochastic models. In order to determine the probability of a major outbreak

or disease extinction, we must consider a stochastic model. In this section we will consider a

continuous time Markov chain (CTMC) model with a discrete number of hosts and vectors. We

will apply the theory of multitype branching processes to estimate the probability of a major

outbreak or disease extinction.

4.1 CTMC Model Formulation

Since time is continuous, we shall formulate the stochastic model as a continuous time Markov

chain, although the dynamics for the a discrete time Markov chain will be similar. This model
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can be thought of as a multitype birth and death process.

Let Sh(t), Ih(t), and Rh(t) denote the discrete-valued random variables for the number of

susceptible, infectious and recovered human hosts at time t. respectively. Let Sv(t) and Iv(t) de-

note the discrete-valued random variables for the number of susceptible and infectious mosquito

vectors at time t. As before, let the total population for the hosts and vectors be given by

Nh(t) = Sh(t) + Ih(t) + Rh(t) and Nv(t) = Sv(t) + Iv(t). For simplicity, the same notation is

used for the discrete random variables and parameters as in the deterministic model.

For a CTMC model, we make the assumption that the transitions from one state to another

may occur at any time t. The state transition rates for the CTMC model are presented in Table 2.

It is assumed that in a any given interval ∆t that at most only one event occurs. The multivariate

stochastic process is defined as

X(t) = {Sh(t), Ih(t),Rh(t),Sv(t), Iv(t),Rv(t) : t ∈ [0,∞]}

with joint probability distribution given by

psh,ih,rh,sv,iv,rv(t) = Prob{Sh(t) = sh, Ih(t) = ih,Rh(t) = rh,Sv(t) = sv, Iv(t) = iv,Rv(t) = rv}.

It is assumed that the this stochastic process is time homogeneous and satisfies the Markov

property. The Markov property implies that the inter-event time is exponentially distributed

with parameter

ω(X(t)) = µhNh +µvNv +βhhSh(t)Ih(t)+βhvSh(t)Iv(t)+βvhSv(t)Ih(t)+ γhIh

5 Stochastic Threshold for Disease Extinction

In a stochastic epidemic model it is possible to make predictions concerning the probability

of a disease outbreak or disease extinction. In a single group birth-death process, a birth can be
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Table 2: State Transition rates for the simple model

Description State Transition Rate

Birth of a susceptible human (Sh, Ih,Rh,Sv, Iv)→ (Sh +1, Ih,Rh,Sv, Iv) µhNh

Death of a susceptible human (Sh, Ih,Rh,Sv, Iv)→ (Sh−1, Ih,Rh,Sv, Iv) µhSh

Death of a infected human (Sh, Ih,Rh,Sv, Iv)→ (Sh, Ih−1,Rh,Sv, Iv) µhIh

Death of a recovered human (Sh, Ih,Rh,Sv, Iv)→ (Sh, Ih,Rh−1,Sv, Iv) µhRh

Birth of a susceptible vector (Sh, Ih,Rh,Sv, Iv,Rv)→ (Sh +1, Ih,Rh,Sv, Iv) µvNv

Death of a susceptible vector (Sh, Ih,Rh,Sv, Iv)→ (Sh, Ih,Rh,Sv−1, Iv) µvSv

Death of a infected vector (Sh, Ih,Rh,Sv, Iv)→ (Sh, Ih,Rh,Sv, Iv−1) µvIv

Infection of a human (Sh, Ih,Rh,Sv, Iv)→ (Sh−1, Ih +1,Rh,Sv, Iv) βhhSh(t)Ih(t)+βhvSh(t)Iv(t)
Infection of a mosquito (Sh, Ih,Rh,Sv, Iv,Rv)→ (Sh, Ih,Rh,Sv−1, Iv +1) βvhSv(t)Ih(t)
Recovery of a infected human (Sh, Ih,Rh,Sv, Iv,Rv)→ (Sh +1, Ih−1,Rh,Sv, Iv) γhIh

thought of as an infection and a death as a recovery. If R0 > 1 and if there are io initial infections

in a wholly susceptible population then the probability of a major outbreak is approximated by

1−( 1
R0

)io . The probability of disease extinction is ( 1
R0

)io [29]. However, this result is only valid

when infections arise from a single infectious group. It is based on a single group branching

process [2, 3, 4].

In the case of multiple infectious groups, the probability of disease extinction or outbreak may

be approximated using a multitype branching process theory. The probability for extinction in

the multigroup case depends on both the number of initially infected individuals in each group

along with the extinction probability for each group. Further, unlike in the deterministic model,

persistence is not guaranteed simply because R0 > 1. One of the most profound differences

between a deterministic and a stochastic model is the fact that disease extinction is possible

immediately following the initial infectious even when the deterministic model would assume

a endemic equilibrium. During the initial stages of the infection, the invasion probabilities are

approximated by assuming that the whole population is susceptible using a Bienamye-Galton-

Watson branching process [6, 7].
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5.1 The Bienamye-Galton-Watson branching process (BGWbp)

The branching process theory can be used to find the disease invasion and extinction probabilities

for a multigroup disease model. The general theory for a multitype branching process will be

presented and then it will be applied to the Zika model in order to calculate the probability

of a major outbreak and disease extinction. We begin by defining a Bienamye-Galton-Watson

branching process as in [2, 3, 4],

Definition 5.1 A multitype BGWbp I(t)∞

t=0 is a collection of vector random variables I(t), where

each vector consists of k different types, I(t) = (I1(t), I2(t), · · · , Ik(t)) and each random vari-

able Ii(t) has k associated offspring random variables for the number of offsprings of type

j = 1,2, · · · ,k from a parent of type i.

We assume that there i types of infectious group with Ii(t) members at any time t. Each

member can give birth to an individual of type j, I j(t). If i = j then this would be a within group

transmission (sexual transmission in the case of Zika) and if i 6= j then it would be between group

transmission (vector to host or host to vector transmission in the case of Zika). The number of

offspring generated by any type i individual is assumed to be independent. We also assume that

the offspring generating function for any individual of the same type is identical.

Let Z ji
n
j=i be a sequence of random variables representing the number of offspring of type

j generated by a type i individual. The offspring probability generating function (pgf) for the

infectious population, Ii is then defined for a single infectious individual at the start of the epi-

demic, Ii(0) = 1 for some i = 1, · · · ,n and all other groups I j(0) = 0 for all j 6= i. Therefore, the

offspring pgf, fi : [0,n]n→ [0,1] is defined as

fi(ζ1, · · · ,ζn) =
∞

∑
κn=0
· · ·

∞

∑
κ1=0

Pi(κ1, · · · ,κn)ζ
κ1
1 · · ·ζ

κn
n
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where

Pi(κ1, · · · ,κn) = Prob{Z1i = κ1, · · · ,Zni = κn}

is the probability that one infected individual of type i infects or ”gives birth” to κ j individu-

als of type j. There is always a fixed point of the pfg, fi(1, · · · ,1) = 1 [2, 3, 4, 19, 5]. Note

that fi(0, · · · ,0) denotes the extinction probability Ii(0). We can define a stochastic threshold

analogous to the spectral radius of the next generation matrix in the deterministic case as the ex-

pectation matrix of the offspring probability function. Define M= [m ji] as an nxn, nonnegative,

irreducible matrix where the m ji entry is the expected number of offsprings of type j individu-

als produced by an infected type i individual. The elements of the matrix M are calculated as

follows,

m ji =
∂ fi

∂u j

∣∣∣∣
κ=1

The stochastic threshold for disease extinction or persistance of the multitype BGWbp is

determined by the size of the spectral radius of the expectation matrix M. Thus if the spectral

radius, ρ(M)≤ 1, then the probability of ultimate disease extinctions as t→∞ is one. However,

if ρ(M)> 1 then there is a positive probability that the disease may persist. Following the work

of Allen, van den Driessche, and Lahodny in [2, 3, 4, 5, 13, 19, 20], we summarize the results in

the following theorem,

Theorem 5.1 Let I(t) be a BGWbp and its associated expectation matrix M defined as above

be nonnegative and irreducible.

(i) If ρ(M)≤ 1 then the BGWbp is subcritical or critical with

lim
t→∞

Prob{I(t) = 0}= 1.

(ii) If ρ(M)> 1 then the BGWbp is supercritical with

lim
t→∞

Prob{I(t) = 0}= qi1
1 · · ·q

in
n < 1.
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where (q1, · · · ,qn) is the unique fixed point of n offspring pgfs and (i1, · · · , in) is the vector

of initial infectives for the n groups. The qi′s are the probabilities of disease extinction for

infectives of type i and the probability of disease extinction is approximately

qi1
1 · · ·q

in
n .

5.2 Extinction Probabilities for Zika

In this CTMC model of Zika virus, there are two infectious classes: the infected humans (hosts)

and the infected mosquitoes (vectors). Let the humans be type 1 and the mosquitoes type 2. The

stochastic threshold can then be approximated by a two-type BGWbp. Let the infected human

hosts be denoted as type 1 and let the mosquito vectors be denoted as type 2.

In order to create the offspring probability generating function for the branching process, we

will use the state transitions for the CTMC model in Table 2. Define the offspring probability

generating function for type 1 humans as fi. Assume that the population is at the Zika free

equilibrium with one infected human. The rate at which one infected human can infected a

susceptible human is covered by sexual transmission and is give by βhhNh which results in two

infected humans in the population. However, this is not the only infection can arise as there

is also the possibility that the human will infect a vector at the rate βvhNv which will result in

one infected human and one infected mosquito. Finally, the infected human may die or recover

from the disease at the rate µh + γh. In order to form the offspring generating function, these

rates must be converted into probabilities by dividing by the sum of the rates of infection, death

and recovery which is equal to βhhNh +βvhNv +µh + γh. Therefore, the offspring pgf for type 1

humans is given by
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f1(ζ1,ζ2) = P1(2,0)ζ 2
1 +P1(1,1)ζ1ζ2 +P1(0,0) (5.1)

=
βhhNhζ 2

1 +βvhNvζ1ζ2 +µh + γh

βhhNh +βvhNv +µh + γh
, ζ1,ζ2 ∈ [0,1] (5.2)

Similarly, for the case of type 2 mosquitoes, we have

f2(ζ1,ζ2) = P2(1,1)ζ1ζ2 +P2(0,0) (5.3)

=
βhvNhζ1ζ2 +µv

βhvNh +µh
, ζ1,ζ2 ∈ [0,1] (5.4)

We may now calculate the expectation matrix from the offspring probabilities. The individual

matrix elements, m ji, are given by

m11 =
∂ f1(ζ1,ζ2)

∂ζ1

∣∣∣∣
ζ1=1,ζ2=1

=
2βhhNh +βvhNv

βhhNh +βvhNv +µh + γh
(5.5)

m12 =
∂ f2(ζ1,ζ2)

∂ζ1

∣∣∣∣
ζ1=1,ζ2=1

=
βhvNh

βhvNh +µh
(5.6)

m21 =
∂ f1(ζ1,ζ2)

∂ζ2

∣∣∣∣
ζ1=1,ζ2=1

=
βvhNv

βhhNh +βvhNv +µh + γh
(5.7)

m22 =
∂ f2(ζ1,ζ2)

∂ζ2

∣∣∣∣
ζ1=1,ζ2=1

=
βhvNh

βhvNh +µh
(5.8)

and therefore the expectation matrix is given by

M=

 2βhhNh+βvhNv
βhhNh+βvhNv+µh+γh

βhvNh
βhvNh+µh

βvhNv
βhhNh+βvhNv+µh+γh

βhvNh
βhvNh+µh

=

[
A+B C

B C

]
where

A =
2βhh

βhhNh +βvhNv +µh + γh
B =

βvhNv

βhhNh +βvhNv +µh + γh
C =

βhvNh

βhvNh +µh

The spectral radius of the expectation matrix, ρ(M), is the solutions to the following

λ =
1
2
(A+B+C)+

1
2

√
(A+B+C)2−4BC
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In order to find the extinction probabilities, we must find the fixed points of the nonlinear

equations,

βhhNhζ 2
1 +βvhNvζ1ζ2 +µh + γh

βhhNh +βvhNv +µh + γh
= ζ1 (5.9)

βhvNhζ1ζ2 +µv

βhvNh +µh
= ζ2 (5.10)

6 Discussion

Validation of the numerical models and simulations will be conducted in a future paper. How-

ever, qualitatively we have seen that the expectation of the stochastic model behaves similarly

to the deterministic model. Moreover, for any given stochastic realization there is a distinct

possibility of stochastic extinction. The Bienamye-Galton-Watson branching process provides

a mechanism for calculating the probability of that event. Further, it is possible to quantify

the effect that the direct sexual selection has on the disease. Because of the low transmission

possibility, in this model its effects on the extinction probability is negligible.
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