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Impact of stress jump on two phase peristaltic
transport - A physiological aspect

S Shaw *and P. Sibanda *

Abstract

In this investigation we considered to extend the work of Misra and Pandey [1] by tak-
ing the permeability nature of the peripheral region and introduce a stress-jump condition at
the interface of core and peripheral region present a mathematical model for the peristaltic
transport in small vessels. The blood is treated as a two-phase fluid with a core region that
is described by the Casson model and a porous peripheral layer that is described by the
Brinkman extended Darcy model. The study shows, that a high blood flow rate introduces a
trapping region in the peripheral layer while reflux occurs in the core region for increasing
porosity and stress-jump constant, and a better pumping performance is obtained by reduc-
ing the Darcy number. The trapped region area increased with the stress-jump constant and
the effective viscosity. However the reverse phenomena was observed for the Darcy number
and porosity. The effective viscosity increases size of the trapping region. Moreover, it was
observed that the Darcy number and the stress jump constant strongly affect the velocity
profile more than the porosity and the yield stress. The pumping performance decreased

with increases in Darcy number.

*Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Private
Mail 16, Palapye, Botswana, email : sachinshaw @ gmail.com; shaws @biust.ac.bw

TSchool of Mathematics, Statistics and Computer Sciences, University of KwaZulu-Natal Pietermaritzburg, KwaZulu-Natal,
3209, South Africa, email : SibandaP@ukzn.ac.za



56 S. Shaw and P. Sibanda

1991 Mathematics Subject Classification: 35J25, 35K05, 76Mxx, 76Zxx.
Keywords: Casson fluid, two-phase flow, stress-jump condition, peristaltic pumping reflux, trapping

region..

1 Introduction

Peristaltic transport involves the propogation of progressive wave of area contraction or expansion along
the wall of a fluid-filled distensible tube. In the human body, peristaltic action is an inherent neuro-
muscular property of any tubular smooth muscle structure (Jaffrin and Shapiro [2]). This mechanism is
responsible for the transport of biological fluids in several physiological processes such as the passage
of urine from the kidneys to the bladder, the transport of food bolus through the gastrointestinal tract
(Tripathi and Beg [3]), the transport of blood in small blood vessels Misra and Pandey [4]), embryo
transport in the uterus, and the movement of spermatozoa in the reproductive tract (Batra [5]). It has
been suggested that impaired peristalsis may result in the transport of bacteria (Pozrikidis [6]) and infer-
tility (Macht [7]). Peristaltic transport is also useful in the design of pumps used in the transportation of
corrosive or dangerous fluids and biomedical systems. Many modern medical devices are designed on
the principle of peristaltic pumping to transport fluids without internal moving parts, for example, the
blood in the heart-lung machine. In the present problem we mainly focus on the vasomotion flow that is
prevalent in the entire microcirculatory system.

Chakravarty and Mandal [8] studied a two dimensional blood flow through a tapered stenosed
artery by considering blood as Newtonian fluid. Peristaltic flow Later Mandal [9] extended the work for
non-Newtonian power-law fluid for unsteady flow. Shaw et al. [10] studied a two dimensional blood flow
through a stenosed artery by considering blood as Casson fluid. Deshikachar and Rao [11] studied the
effect of the magnetic field on the flow and blood oxygenation in the channel of variable cross section.
They are considered the pulsatile flow of blood with channel wall as a function of axial coordinate.

Mekheimer [12] studied the peristaltic flow of blood in a non-uniform channels in presence of magnetic
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field. He considered non-Newtonian Couple-Stress fluid as blood. Many Researchers are investigated the
peristaltic blood flow through the small artery using a two phase fluid model for blood and they observed
that the peripheral layer highly influenced the peristaltic blood flow (Usha and Rao [13]). Permeability
plays a vital role in the peristaltic transport phenomena (Akbar et al. [14]). Bhatti et al. [15] have studied
the impact of slip effect on the blood flow induced by peristaltic wave and presented as endoscopy
analysis on the system. Bhatti et al. [16] shows the influence of the permeability and interface conditions
for a two phase peristaltic flow in a porous medium. Peristaltic flow is very significant in the channel
flow mainly when deals with porous medium (Mohammadein and Abu-Nab [17]).

Precious most of the problem based on the single phase peristaltic flow of Newtonian or non-
Newtonian fluid. The present problem deals with a two phase flow. Mishra and Pandey [1] investigated
the peristaltic blood flow through the small artery using a two phase fluid model by considering Casson
fluid at the core region and Newtonian fluid at the peripheral layer which is impermeable in nature. The
objective of the present paper is to investigate the significance of permeability of microvessel, stress
jump condition on peristaltic transport of blood. The trapping and pumping characteristics are discussed

for different parameters in the model which will give a clear view on the blood transport in microvessel.
2 Mathematical Formulation

We Consider a two dimensional peristaltic transport in a channel surrounded by a glycocalyx based
peripheral layer. The walls of the channel are assumed to be flexible and peristaltic propagating wave is
represented by a sinusoidal wave in fixed frame with amplitude b, wavelength A and a constant speed ¢

in the axial direction and written as

2
Y =+H(X —ct) =+ d+bsm7”(x—ct) ,

where 2d is the mean channel width. The interface of the plug and the core region, and the core and

peripheral regions are denoted by Y = +H,(X —ct) and Y = +H, (X — ct), respectively as shown in Fig.
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At the core, the blood behaves as a non-Newtonian Casson fluid with density p; and viscosity U,
and in the peripheral layer it behaves as an incompressible Newtonian fluid with density p, and viscosity
U>. Due to glycocalyx, the peripheral layer is highly negatively charged and this is included as a body
force term in the momentum equation. We assume the peripheral layer is isotropic and homogeneous.
The boundary shape does not remain constant in the unsteady laboratory frame. We further assume that
that the pressure difference across the ends of the channel is unaltered and the period of the interfaces
and peristaltic wave are same. Using a transformations from the fixed frame such a way that the flow
becomes steady in a wave frame of reference (x,y) moving with speed ¢ in the direction of the wave

propagation, written as
x=X—ct,y=Y, u;=U;—c, vi=V;, pi(x) = P(X,1), (2.1)

where (u;,v;) and (U;,V;) are defined the velocity component in the axial and transverse directions, in
the wave and fixed frames of reference.The subscript i takes the value 1 for the core layer and 2 for the

glycocalyx based peripheral layer. The equations of the Casson fluid suggested by Casson [18] are

VT=uy+v% 1t>71,7=0, 1<7, (22)
where 7 is the shear stress, ¥ is the strain rate, 7, is the yield stress and pi. is the Casson viscosity.

2.1 Effective Viscosity

When blood flow through the microvessel, the apparent viscosity of the blood simultaneously depends
on the hematocrit and diameter of the microvessel mainly when the diameter of the microvessel smaller
than 40um (Fahraeus [19]; Fahraeus and Lindqvist [20]). This happen due to the axial accumulation of
the RBCs which form a lower viscosity plasma skimming cell-depleted region near the microvessel wall.

We use the experimentally determined analytic formula given by Pries et al. [21] for effective blood
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Figure 1: Peristaltic motion at the microvessel wall

viscosity as

1—Hp)¢—1 d, \* d, \*
=4 1+(“0'45_1)((1—0.55))C—1)<dv—1.1> ] X(dv—1.1> ’ 2.3)

where [ is the viscosity of the blood plasma or the peripheral layer, d,, is the diameter of the microvessel
in micrometer (Um), Hp is the hematocrit of blood, d,, is the diameter of the vessel and the other constants

_ _ 0.645 _
are Ho,gs = 6e 0085 1.3.2— 2 44 004 and € = (0.8+ ¢~ 0 (b — 1) + pgbgm

2.2 Fluid flow equation

When the wavelength is large, the Reynolds number Re = d?cp; /Ay is quite small, and therefore the
initial convection acceleration terms may be neglected in comparison with viscous terms. We are using

the following set of non-dimensional quantities

F=x/A, y=y/d, T=ct/A, p;=d*pi/cA, @; = u;/c, v; =v;/c8, §=d/A,
h=H/d, hy=Hp,/d, h =H\/d, pu= b/, p=p1/p2, ¥; =¥i/dc, T, =dTy/cpu,

k=dKk. (2.4)

Using the above assumption and non-dimensional quantities, the non-dimensional governing equa-
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tion of motion in the fluid core region (0 <y < hy) is written (dropping the bar for convenience) as

8u1 8v1 .
St =0 (2.5)
Juy
— = <y< .
Iy 0, 0<y<hy,, (2.6)
api o) Jduy duy
A g, 2 <y<h. :
P ay[ Iy +7,+2 Tyay], hy <y<h 2.7)

Using the Darcy-Brinkman model for the peripheral layer including the electrokinetic force as a
body force, the non-dimensional governing equation at the porous region (h; <y < h)is written (dropping

the bar for convenience) as

duz 2 _
ox  dy
apz _E&ZLQ u

x €2 K7 9

0, (2.8)

where € and K are the porosity and permeability in the porous region, respectively. We introduce the

stream function ¥; where u; = d¥;/dy and v; = —dW¥;/dx, and eliminating the pressure gradient we get
W, =0, 0<y<h,, (2.10)

—\Plyy+ry+2\/m}w:0, hy <y <hi, @.11)

Woppyy — "2y, =0, hy <y<h, (2.12)

where a?> = ¢/Da, Da = K/d? is the Darcy number. The subscript y represent the partial derivative
with respect to that term. By considering the no-slip condition at the wall, conservation of mass at the
peripheral layer, maximum and constant velocity at the center of the axis, the non-dimensional boundary

conditions at the wall and axis of the microvessel are written as
\P2y:_17 ¥, =g, aty:h(x)v (2.13)

¥, =0, ¥ =0 aty=0. (2.14)
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At the interface of the clear fluid region and porous region i.e., at y = hj(x), we are considered the
conservation of mass, continuity of the velocity, stress-jump condition and continuity of pressure gradient

which can written in the non-dimensional form as

¥, =¥, = ¢, (conservation of mass) (2.15)
W1, = ¥»,, (continuity of velocity) (2.16)
Wiy = Ue (Wayy — B1Way), (stress-jump condition), (2.17)

Wiy <1 +4/ T),/‘Plyy> = He(W2yyy, (normal stress) (2.18)

where ¢ and ¢ in (2.13) and (2.15) are the total and core fluxes, respectively, y = u/€ and B =

Be/v/Da.
2.3 Solution of the problem

We obtain the stream function at the core and the peripheral region by solving the equations (2.11) and

(2.12) using the corresponding boundary conditions (2.13)-(2.18) as

Yi(x,y) = _A();)y3 P — 15?4\/(?))2 [(A(x)y—k 7,)%/? — Tys/z] +Cy, (2.19)
Y5 (x,y) = g — (y —h) + N, [sinh(ky) — sinh(kh) — k(y — h) cosh(kh)]
+ G|[cosh(oty) — cosh(ah) — at(y — h) cosh(oth)]

+ H [sinh(oty) — sinh(oth) — ot (y — h) cosh(ah)], (2.20)

where the constants C,G,H and N;(i = 1,2, ....,8) are given in the Appendix. The stream function at the

plug region (0 <y < h,) is determined as

A(x)h,? 8,/T
plx,y) - —ryhp—ls(A(\gy)% ((A(x)h,,+ry)5/2—ry5/2) +Cly, (2.21)
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We can determine the value of A(x) from the following equation

0=k (AGX))® + ko (AW + V5 (A (A4 1)
~1/2
B [A<x>h1 +25,42, /5, (A +ry>} (145 A + 1))
+h3 () (AR +5)" + ks (AR + 1)

+ks(A(X)) (A +1,)* 2 + ks, (2.22)

where the constants k; (i =1, . . .,6) are given in the Appendix. Using the secant method we can
easily solve this equation to find the appropriate value of A(x). The non-dimensional flux Q at any axial

direction as function of the flux ¢ in the wave form is defined as

h
Q:/O (u+1)dy = q+h. (2.23)

The average volumetric flow rate of the peristaltic wave over one period (T = A /c)is obtained as

I 17 !

The interface between the porous and fluid region is a streamline which should satisfied the conservation
of mass in both region as mention in condition (2.15) and it is not known apriori. Using equation (2.15)
and solving any one of the stream functions ¥ or ¥,. For simplicity, using W> = ¢; which give the

equation for the interface /i (x) as

k(hi) = q1 — q+ Ny (sinh(xh) — sinh(xh;)) — (h— hy)(1 + Ny x cosh(xh))
+ G [cosh(oth) — cosh(athy) — (h— hy)ocsinh(och)]

+ H [sinh(oth) — sinh(ah; ) — (h— hy)acosh(ah)] =0, (2.25)

where g and g; are constants i.e., independent of x. Using #; = y at x =0 in (2.25) we get

(1 —=y)Mo+ (Q — 1)Me+ M3 [M1o(MaM3 — M My) + My (M2 + Mi3)] — MiMsMi4
M (M1 My — MoMs) ’

q1 = (2.26)
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where the constants M;(i = 1, . . ., 14) are given in the Appendix. Equation (2.25) is a transcendental
equation and may have many positive real roots. The interface of the porous and fluid region is well
defined if it contain a single root in the interval 0 < iy < h and satisfied the equation (2.24). From the
equation (2.25), we obtained the boundary values k(h;) as k(0) = ¢ and k(h) = —g» = g1 — q. Depending
on the sign of ¢; and ¢», three different cases may arise (i) if both g1,g> > 0 or < 0O, then there exist at
least one non-zero real root or an odd number of roots. A single root in the given interval assured an
unique interface which is independent v, (ii) if g; and g, are of opposite sign then there exist an even
number or no real roots in the domain. So the interface is not unique, and (iii) if either g; or g, is zero,
then there exist a non-zero even or odd number of real roots which depends on the function k(h;) as it is

decreasing or increasing function near y = 0 and y = h (Mishra and Rao [22]).

3 Results and discussions

In this study we used both analytical and numerical methods to solve the governing equations. To find
the root of the equations we used the secant method and integrated using Simpson’s 1/3 rule. We used
the following parameter values; the blood yield stress is 0.0004N /m?, the peripheral layer thickness
(average) is 1.5um, the Casson viscosity for the core region u; = 3.5cp, the viscosity at the peripheral

layer u, = 1.02cp at 39% hematocrit and the radius of the microvessel is Sum.

3.1 Trapping

For certain combinations of the phase angle ¢ and Q there is a region of closed streamlines. This region
experiences a recirculation and moves with a mean speed equal to that of the wave. This is termed the
trapping region. Peristalsis exhibits this phenomenon when the tube is sufficiently occluded. We set

¥, =0 for y > 0 in equation (2.19) to determine the trapping range. This gives the polynomial of order
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five;

25A%)° — A31,(64A% + 150)y* + A*(—951,% + 150AC)y’ — A’1,(5607,% + 450AC)y’

+A%(225A%C* - 8801,%) + A1, (240AC — 3207,%) =0, (3.27)

for an appropriately chosen 0 < y < h. The presence of center streamline trapping is associated with
the existence of stagnation points in the wave frame at the center line where the velocity components u;
and v both disappeared. The stagnation points are calculated from (2.19) using the following conditions
given as

Ut ly=0=vi|y=0=0, (3.28)

which implying that

o (14+h+ Ny5)NsNig — Ni6(NsNe — NaNg) — Ni2(N17Ne — NgNig) (3.29)
NgNi6 ' '

We calculating the upper trapping limit Q,, and the lower trapping limit Q; by substituting & and h; at
x = 0.25 and x = 0.75 in the above equation, respectively and get center line trapping lying between Q;
and Q,. Equations (3.25) and (3.29) were solved simultaneously and the values of the lower and upper
trapping limits found.

The lower trapping limit function of the phase angle for different value of Darcy number Da,
porosity €, shear-stress jump constant 3 and viscosity ratio u is shown in Figs. 2(a)-2(d). It is evident
that the lower trapping limit is a non-linear function of the phase angle. The trapped region area increases
with the shear stress jump constant § and the viscosity i. However, the reverse is observed for the Darcy
number Da and the porosity €. The lower trapping limit initially increases up to a certain point and then
decreases with the phase angle.

The effect of the Darcy number on the streamlines in the wave frame is shown in Fig. 3 when
0=0.6,u=0.343¢ =0.6,y=0.7, = 0.5 and € = 0.7. Here the trapping region decreases as the

Darcy number decreases and when Da < 0.1 no trapped region develops. Increasing the viscosity ratio
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Figure 2: The lower trapping limit vs. the phase angle when y = 0.7,7, = 0.001 (a) for different Da
(e=0.3,u=0.343,8 =0.1) (b) for different € (B =0.1,u = 0.343,Da = 0.5).
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Figure 3: The lower trapping limit vs. the phase angle when y = 0.7,7, = 0.001 (a) for different 3
(e =0.3,u =0.343,Da = 0.5) (b) for different u (8 =0.1,€ =0.3,Da =0.5).
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U increases the size of the trapping region, a similar phenomena observed for bolus transport in the

gastrointestinal tract as reported by Rao and Mishra [22].
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Figure 4: Streamlines in the wave frame with Q = 0.6,u = 0.343,¢ = 0.6, = 0.7,y= 0.7, = 0.5 (a)
Da = 10 (b) Da = 4.
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Figure 5: Streamlines in the wave frame with Q = 0.6,u = 0.343,¢ = 0.6, = 0.7,y = 0.7, = 0.5 (a)
Da = 10 (b) Da = 4.
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Figure 6: Streamlines in the wave frame with Q = 0.6, u = 0.343,¢ = 0.6, = 0.7,y = 0.7, = 0.5 (a)
Da =1 (b) Da=0.1.

3.2 Reflux and axial velocity

Reflux is a phenomena which refers to the presence of fluid particles whose mean motion over one cycle
is against the net pumping direction. This phenomenon is of physiological importance as it may imply
a possible backward motion of bacteria against the direction of the physiological fluids. We define a
non-dimensional volume flow rate Qg which define the material particles in a fixed frame. Between the

axis of the channel and the wave frame streamline ¥, the volume flow rate is written as
Oy =¥ +y(P,x,1). (3.30)
Averaging Qg over one period of the wave, we obtain

1
Oy :‘P+/O y(P,x)dx. (3.31)

Normalized the average Qy and stream function using the following definitions as Q* = Qy/Q,,, ¥* =
¥ /¥,, where Q,, and P, are represent the flow rate and the stream function at the vessel wall (i.e., y =
h(x,t)) where 0, =0and¥,, = 01 =q. If Q" is an increasing function of ¥* then the particle motion

always towards the pumping direction. However if Q* is a decreasing function of W* then reflux appears
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in that region. With a given constant value ¥, we solve the equations (2.19) and (2.20) numerically by
considering y as a function of x.

The reflux phenomena in Q* as a function of W* is shown in Fig. 5 for different values of the Darcy
number, stress jump constant, porosity and yield stress. In all cases Q* varies nonlinearly with W*. It is
observed that the reflux appears for small Darcy numbers and ¥*. Otherwise Q™ is a strictly increasing
function of the Darcy number. The reflux however appeared for higher values of the stress-jump constant
B. Itis evident that Q* is a strictly increasing function of ¥* when 8 = 0. Q* decreases for lower values
of W* but then increases non-linearly with ¥* for non-zero 3. The same phenomena is shown for the
porosity parameter €. The effect of the yield stress on Q* is shown in Fig. 5(d) for Da = 0.01. The value

of Q" is less when considering the non-Newtonian fluid at the core region than for the Newtonian case.

1 1
Da=0.05, 0.1, 1, 10, 100 620,05, 1,2
08l il 0.8t
06/
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N 0.4f
o *
04t i o
02t
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0.2 0.4 06 08 1 “o 02 0.4 0.6 0.8 1
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Figure 7: The reflux phenomenon Q* vs. W* with u = 0.343,¢ = 0.6,0 = 0.1,y = 0.7 (a) for different
Da (¢ =0.3,8 =0.1,7, = 0.001) (b) for different B (¢ = 0.8,Da = 0.5, 7, = 0.001).

The axial velocity u of the fluid is calculated by differentiating Eqgs. (2.19) and (2.20) with respect

to y for the core region (u;)and the peripheral region (), respectively. This is given by

A2 4./7,
u = ();)y —2ny - 32/(3) Ay +1)2+C, (3.32)

up = —1+ Nk [cosh(ay) — cosh(ah)| + Ga [sinh(ay) — cosh(oh)] + Ha [cosh(oty) — cosh(oh)].

(3.33)
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Figure 8: The reflux phenomenon Q* vs. W* with u = 0.343,¢ = 0.6,0 = 0.1,y = 0.7 (a) for different
€ (B =0.8,Da = 0.05,7, = 0.001) (b) for different 7, (¢ =0.5, =0.7,6 =0.8,Da = 0.01).

The axial velocity is plotted in Fig. 6 for different Darcy numbers, porosity, stress-jump constant and
yield stress. It is observed that the Darcy number and the stress-jump constant more strongly influence
the velocity profile than does the porosity and the yield stress. The kinks in the graphs show points
on the interface where the shear stress is discontinuous. A flow reversal appears in the core region for
Da =0.01,8 = 0,0.5 and all values of 7, indicating a possible reflux in that region as observed in Fig.

??. Near y = 0, the velocity profiles are parallel to the y-axis an indication of the yield stress.
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Figure 9: Axial velocity at x = 0.25 with ¢ = 0.5,7=0.7,0 = 0.5, u = 0.343 (a) for different Da (¢ =
0.7, =0.5,7, = 0.001) (b) for different € (8 = 0.5,7, = 0.001,Da = 0.5).
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Figure 10: Axial velocity at x = 0.25 with ¢ = 0.5,y =0.7,0 = 0.5, u = 0.343 (a) for different 8 (¢ =
0.7,7, = 0.001,Da = 0.5) (b) for different 7, (8 =5, =0.9,Da = 0.5).

3.3 Pumping characteristics

Substituting (2.19) and (2.20) in the momentum equation, we get the pressure gradients at the core and

the peripheral region as

J
% — A AT (Ay+ 1) P+ AT+ VT (Ay+ 27, + 24 Ayt + 3,2), (3.34)
‘98’;2 — e kN (K2 — o?) cosh(ky) + Dia (14 Ny kcosh(kh)) + %(G+H) cosh(ah) +F,.  (3.35)

The pressure difference for one wavelength is found by integrating equations (3.34) and (3.35)

1
AP = p| — :/ A+AST(AY+1,) V2 L AT, + T) (Ay + 2T, + 24 /AyT, +1,2))dx.  (3.36
P1—Po 0( VT (Ay + 1)) (7 + V1) (Ay+21, +24/AyTy + 7,%) )dx.  (3.36)

Using numerical quadrature formulae from equation (3.36),we calculate average flow rate Q as a function
of Ap. The maximum pressure difference Apg, obtained by putting Q = 0 in above equation. The effect
of various parameters such as the Darcy number, porosity, stress-jump constant and viscosity ratio on
the pumping characteristics is shown in Fig. 7. It is observed that at the pumping region, the pumping
efficiency increases (Ap > 0) with decrease in Darcy number.It is interesting to note that the pumping
efficiency is less for the clear fluid as the porous region becomes a clear fluid region for large value of

Darcy number i.e., the permeability of the peripheral region is tending to infinity. It is observed that Ap
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is a linear function of Q. The effect of the porosity on the pumping characteristics is shown in Fig. 7(b).
The pumping characteristics is a decreasing function of porosity € but it increases for larger values of a
critical Ap and a flow reversal occurs for a smaller value of the critical Ap. Similar results are obtained at
the co-pumping region (Ap < 0). All the curves intersect at a critical point. The position of this critical
point depends on the value of the other parameters. In the present study, we have considered Brinkmann
extended Darcy model in the peripheral region where the porosity lies between 0 and 1, (Nield [23]). It
is also evident that for large values of the porosity, shows a bigger flux in free pumping and copumping.
The average volumetric flow rate Q increases with an increase in the value of stress jump constant f3 for a
fixed Ap. However a reversal phenomena evident at lower values of Ap which clearly depicted from Fig.
7(c). With an increase in the viscosity, the critical Ap increases as shown in Fig. 7(d). An interesting

observation here is that all the curves intersect at the free pumping (Ap = 0) region.

Da=0.01, 0.1, 1, 10

0.2 0.4 0.6 0.8 1 1.2 14 0.2 0.4 0.6 0.8 1 12 1.4
Ap Ap

Figure 11: O .vs. Ap with ¢ =0.6,7=0.7, 7, = 0.001 (a) for different Da (¢ =0.7,u = 0.343, 3 = 0.5)
(b) for different € (f = 0.5, = 0.343,Da = 0.1).

4 Conclusion

In the present analysis we investigated the peristaltic flow of blood through microvessels. The radius of a
microvessel is divided into two regions, the core region where blood behaves as a non-Newtonian Casson

fluid model and a glycocalyx based peripheral layer where the blood behaves as a Newtonian fluid. We
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Figure 12: Q .vs. Ap with ¢ =0.6,y=10.7, 7, = 0.001 (a) for different B (¢ = 0.7, = 0.343,Da = 0.1)
(b) for different u (B =0.5,€ =0.7,Da = 0.1).

used both analytical and numerical techniques to solve the governing equations. We mainly discussed the

effects of the Darcy number, stress-jump constant, porosity and the yield stress on the peristaltic flow.

The trapping region decreases with increase of Darcy number but increases with the non-dimensional

viscosity. Pumping efficiency increases with decrease of Darcy number while it is less for the clear fluid.

These qualitative results may have significance to understand the transport of blood in small vessels.

S Appendix

H = [(N4 + Ns5)Ng — N2Ng] /N2,
G= (Ng —N7H)/N6,

C = —1+21yh; + Nix (cosh(xh;) —cosh(kh)) — Ga (sinh(ah) + sinh(ahy))

— Hot (cosh(ath) + cosh(athy ) + 255 — 25 (An, 4 1,)3/2,

_ EUeKYE;
Ni= (k2—a2)cosh(kh)’

N, = cosh(oth) — cosh(ah;) — o (hsinh(ah) — hy sinh(ah,)),
N3 = sinh(ah) — sinh(othy) — a (hcosh(ah) — hy cosh(othy)),

Ny = q—h+1yh* — N (sinh(xh) + sinh(ichy )) + kNj (hcosh(kh) + hy cosh(ichy ),

Ns =40 _ 3T (A 4 1,)%2 — 1,572) 4 D (A 4 )32,
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Ng = Ueor [acosh(ahy) — By (sinh(ah; ) — sinh(ath))],

N7 = ueo [asinh(ah;) — B (cosh(ah;) — cosh(och))],

Ns = —(Ah1 +27,) — 2,/%(Ahy + T,)'/? — N1 k21 sinh khy — By e [1 + Ny k(cosh(kh) — cosh(k/y )],
No = o e sinh(ah) /Ng, Nig = — o cosh(ath) — o e N7 sinh(oth) /N,

Ni1 = No [Ny ke (B cosh(khy) — ksinh(khy)) — B te (1 4+ Ny k cosh(kh))],

N1z = N3Ns — N2 N7,

Ni3 = Ni2 +Nio(Ng/Ni2) [g — h+ Ny (hic cosh(ich) — sinh(xh) )]

Nig = Nyo(N2 /N1a) [Ny K le (K sinh(khy ) + By cosh(xh) — By cosh(khy)) + i tel,

Nis = —1,h? + N (sinh(kh) + sinh(khy)) — &Ny (hcosh(kh) + hy cosh(khy ),

Nig = o [N7(sinh(ah) + sinh(athy)) — Ng(cosh(oth) + cosh(athy))],

Niz = —1+ 21,1y + Ny k(cosh(ichy ) — cosh(ich)) + 44 4 2V (4p +7,)3/2 — (4/3)7,%4,
Nig = OC(Sinh(OCh) + Sinh(OC/’ll)),
ki = 14 h1No — hiNo(N1o/N12) + (h1® /3)Ng(N1o/N12),

k2 =—Niz3+ (Nl()/le) [Tyh12 —N; (Sinh(K‘hl) — K'hl COSh(K‘hl))] —|—2Ty(N9 —N2N10/N12),

ks =2,/7,(No — NaN1o/Ni4), ky = —8}/5@(N6N10/N14),

ks = M(N()Nlo/]\’m), ke = %<N6N10/N14),

M; = cosh ot — cosh(ay) — a(sinh ¢ — ycosh(ay)),

M, = sinh ¢ — sinh(ay) — o¢(cosh & — ycosh(ay)),

M3 = pga[ocosh(ay) — By (sinh(ay) — sinh )],

My = ueo[ocsinh(oy) — Bi(cosh(ay) — cosh )],

Ms = —(Ay+21,) —2/T(Ay+ 1,)"/? — Ny K2 e sinh (k) — Bi e [1 + Ny k(cosh k — cosh(k7y))],
Mg = M3 [—a(1 —y)(Mscosha — My sinh @) + M (sinh @ — sinh(ay))]

+M3My(cosh o + cosh(ay)) — M3z (MaMs — M My),

M; = —(M2M3 —M1M4)(M3 + M3N; k cosh k + M50 sinh OC) — oM; (M3 cosh @ — My sinh OC),
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Mg =1+ Nj(kcoshk —sinh k) — 7,¥> + N (1 — ky) sinh(ky) + aM; Ms(M5 cosh & — Ms sinh ),

8 /Ty
15A2

87,3
15A2°

Mo = M7+ Mg — A7 + X5 (Ay+1,)%2 — 5 (Ay 4 1,)3/2 -
Mo = N; (sinh k¥ — sinh(xy)) + cosh o — cosh(ay),

My, = M3 (sinh @ — sinh(oty)) + Ma(cosh a + cosh(ary)),

My; = 1— 1,7’ + N [k(cosh k — ycosh(ky)) — sinh k + sinh(x7)],

W 5 s
Mz =14+ lg/g [(Ay+1,)>% —1,52] - —g‘f(Aer 7,)%/2,

M4 = M3(sinh a — sinh(oty)) + M4 (cosh o + cosh(ay))
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