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Degree of Approximation of Conjugate Fourier
Series of Functions in the Besov space by Matrix

Mean
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Abstract

he paper studies the degree of approximation of functions by their Fourier series in the

Besov space by matrix mean and this generalizing many known results.
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1 Introduction

Let f be a 2π periodic function and let f ∈ Lp[0,2π], p≥ 1. The fourier series of f at x is given by

1
2

a0 +
∞

∑
n=1

(an cosnx+bn sinnx) (1.1)

The conjugate series of ((1.1)) is given by

∞

∑
k=1

(ak sinkx−bk coskx). (1.2)
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Let S̃n(x) be the nth partial sum of conjugate series ((1.2)) given by [Zygmund [6], Vol I, page-49]

S̃n(x) =
−1
π

∫
π

−π

ψx(t)D̃n(t)dt (1.3)

where

ψx(t) = f (x+ t)− f (x− t) (1.4)

and the conjugate Dirichlet kernel is defined by

D̃n(t) =
n

∑
k=1

sinkt =
cos t

2 − cos(n+ 1
2)t

2sin 1
2 t

(1.5)

Let A = (an,k) be an infinite matrix.

We assume that elements of the matrix A = (an,k) satisfy the following regularity conditions

||A||= sup
n

∞

∑
k=0
|an,k|< ∞(1.6)

(an,k)→ 0 as n→ ∞ and k is fixed(1.7)

and

∞

∑
k=0

an,k = 1 for each n = 0,1,2 · · · .(1.8)

Let t̃n(x) denote the A = (an,k) transformation of the conjugate series ((1.2)); that is

t̃n(x) =
∞

∑
k=0

an,kS̃k(x)(1.9)

(i) I 0
p,b f (z) = f (z), f ∈ A(p);

(ii) I −1
p,p−1 f (z) = ap zp +

∞

∑
n=1

n+ p
p

an+p zn+p =
z f ′(z)

p
, f ∈ A(p);

(iii) I −1
1,0 f (z) = a1 z+

∞

∑
n=1

(n+1)an+1 zn+1 = z f ′(z), f ∈ A(1).
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We use the following notations throughout.

K̃n(t) =
∞

∑
k=0

an,kD̃k(t) (1.10)

Hn(t) =
∞

∑
k=0

an,k
cos(k+ 1

2)t

2sin 1
2 t

(1.11)

f̃ (x;ε) =− 1
π

∫
π

ε

ψx(t)
1
2

cot
1
2

tdt,ε > 0 (1.12)

f̃ (x) = lim
ε→0

f̃ (x;ε), whenever the limit exists.

T̃n(x) = t̃n(x)− f̃ (x;
π

n
) (1.13)

It is known ([6]) that for any integrable f the function f̃ exists almost everywhere. It is easy to see that

K̃n(t) =
1
2

cot
1
2

t−Hn(t) (1.14)

t̃n(x) = − 1
π

∫
π

0
ψx(t)K̃n(t)dt

= − 1
π

∫ π

n

0
ψx(t)K̃n(t)dt− 1

π

∫
π

π

n

ψx(t)K̃n(t)dt

= − 1
π

∫ π

n

0
ψx(t)K̃n(t)dt− 1

π

∫
π

π

n

ψx(t)
{

1
2

cot
1
2

t−Hn(t)
}

dt

=
−1
π

∫ π

n

0
ψx(t)K̃n(t)dt + f̃ (x;

π

n
)+

1
π

∫
π

π

n

ψx(t)Hn(t)dt

(1.15)

Using ((1.3)) in ((1.9)) and there after making use of the notations given in ((1.10)) to ((1.14)), we get

t̃n(x) =
−1
π

∫ π

n

0
ψx(t)K̃n(t)dt + f̃ (x,

π

n
)+

1
π

∫
π

π

n

ψx(t)Hn(t)dt (1.16)

Using ((1.13)) in ((1.16)), we have

T̃n(x) =
−1
π

∫ π

n

0
ψx(u)K̃n(u)du+

1
π

∫
π

π

n

ψx(u)Hn(u)du (1.17)
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2 Definitions and Notations

Modulus of Continuity:

Let A = R,R+[a,b]⊂ R or T (which usually taken to be R with identification of points modulo 2π).

The modulus of continuity w( f , t) = w(t) of a function f on A can be defined as

w(t) = w( f , t) = sup
|x− y| ≤ t,

x,y ∈ A

| f (x)− f (y)|, t ≥ 0.

Modulus of Smoothness:

The kth order modulus of smoothness [2] of a function f : A→ R is defined by

wk( f , t) = sup
0<h≤t

{sup |∆k
h( f ,x)| : x,x+ kh ∈ A}, t ≥ 0 (2.1)

where

∆
k
h( f ,x) =

k

∑
i=0

(−1)k−i

 k
i

 f (x+ ih),k ∈ N. (2.2)

For k = 1,w1( f , t) is called the modulus of continuity of f . The function w is continuous at t = 0 if

and only if f is uniformly continuous on A, that is f ∈ c̃(A). The kth order modulus of smoothness of

f ∈ Lp(A),0 < p < ∞ or of f ∈ c̃(A), i f p = ∞ is defined by

wk( f , t)p = sup
0<h≤t

||∆k
h( f , ·)||p, t ≥ 0 (2.3)

if p≥ 1,k = 1, then w1( f , t)p = w( f , t)p is a modulus of continuity (or integral modulus of continuity).

If p = ∞,k = 1 and f is continuous then wk( f , t)p reduces to modulus of continuity w1( f , t) or w( f , t).

Lipschitz Space:

If f ∈ c̃(A) and

w( f , t) = O(tα),0 < α ≤ 1 (2.4)
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then we write f ∈ Lipα . If w( f , t) = O(t) as t→ 0+ (in particular (1.9) holds for α > 1) then f reduces

to a constant.

If f ∈ Lp(A),0 < p < ∞ and

w( f , t)p = O(tα),0 < α ≤ 1 (2.5)

then we write f ∈ Lip(α, p), 0 < p < ∞, 0 < α ≤ 1.

The case α > 1 is of no interest as the function reduces to a constant, whenever

w( f , t)p = O(t) as t→ 0+ (2.6)

We note that if p = ∞ and f ∈ c(A), then Lip(α, p) class reduces to Lip α class.

Generalized Lipschitz Space:

Let α > 0 and suppose that k = [α]+1. For f ∈ Lp(A), 0 < p < ∞, if

wk( f , t) = O(tα), t > 0 (2.7)

then we write

f ∈ Lip∗(α, p), α > 0, 0 < p≤ ∞ (2.8)

and say that f belongs to generalized Lipschitz space. The seminorm is then

| f |Lip∗(α,Lp) = sup
t>0

(t−αwk( f , t)p).

It is known ([2], p-52) that the space Lip∗(α,Lp) contains Lip(α,Lp). For 0<α < 1 the spaces coincide,

(for p = ∞, it is necessary to replace L∞ by c̃ of uniformly continuous function on A). For 0 < α < 1 and

p = 1 the space Lip∗(α,Lp) coincide with Lipα .

For α = 1, p = ∞, we have

Lip(1, c̃) = Lip 1 (2.9)

but

Lip∗(1, c̃) = z (2.10)
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is the Zygmund space [5] which is characterized by ((2.7)) with k = 2.

Hölder (Hα ) Space:

For 0 < α ≤ 1, let

Hα = { f ∈C2π : w( f , t) = O(tα)}. (2.11)

It is known [3] that Hα is a Banach Space with the norm || · ||α defined by

|| f ||α = || f ||c + sup
t>0

t−αw(t), 0 < α ≤ 1 (2.12)

|| f ||0 = || f ||c

and

Hα ⊆ Hβ ⊆C2π , 0 < β ≤ α ≤ 1 (2.13)

H(α,p) Space:

For 0 < α ≤ 1, let

H(α,p) = { f ∈ Lp[0,2π] : 0 < p≤ ∞,w( f , t)p = O(tα)} (2.14)

and introduce the norm || · ||(α,p) as follows

|| f ||(α,p) = || f ||p + sup
t>0

t−αw( f , t)p, 0 < α ≤ 1. (2.15)

|| f ||(0,p) = || f ||p.

It is known [1] that H(α,p) is a Banach space for p≥ 1 and a complete p-normed space for 0 < p < 1.

Also

H(α,p) ⊆ H(β ,p) ⊆ Lp,0 < β ≤ α ≤ 1. (2.16)

Note that H(α,∞) is the space Hα defined above.
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For study of degree of approximation problems the natural way to proceed to consider with some

restrictions on some modulus of smoothness as prescribed in Hα and H(α,p) spaces. As we have seen

above only a constant function satisfies Lipschitz condition for α > 1. However for generalized Lipschitz

class there is no such restriction on α . We required a finer scale of smoothness than is provided by

Lipschitz class. For each α > 0 Besov developed a remarkable technique for restricting modulus of

smoothness by introducing a third parameter q (in addition to p on α) and applying α ·q norms (rather

than α, ∞ norms) to the modulus of smoothness wk( f , ·)p of f .

Besov space:

Let α > 0 be given and let k = [α +1]. For 0 < p,q≤∞, the Besov space ([2], p-54)Bα
q (Lp) is defined

as follows:

Bα
q (Lp) = { f ∈ Lp : | f |Bα

q (Lp) = ||wk( f , ·)||(α,q) is f inite}

where

||wk( f , ·)||(α,q) =


∫

∞

0 (t−αwk( f , t)p)
q dt

t )
1
q , 0 < q < ∞

sup
t>0

t−αwk( f , t)p, q = ∞.

It is known ([2], p-55) that ||wk( f , ·)||(α,q) is a seminorm if 1≤ p,q≤ ∞ and a quasi-seminorm in other

cases.

The Besov norm for Bα
q (Lp) is

|| f ||Bα
q (Lp) = || f ||p + ||wk( f , ·)||(α,q) (2.17)

We know ([2], p-56, [4], p-236) the following inclusion relations.

For fixed α and p

Bα
q (Lp)⊂ Bα

q1
(Lp),q < q1.

For fixed p and q

Bα
q (Lp)⊂ Bβ

q (Lp),β < α.
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For fixed α and q

Bα
q (Lp)⊂ Bα

q (Lp1), p1 < p.

Special cases of Besov space:

For q = ∞,Bα
∞(Lp),α > 0, p≥ 1 is same as Lip∗(α,Lp) the generalized Lipschitz space and the corre-

sponding norm || · ||Bα
∞(Lp) is given by

|| f ||Bα
∞(Lp) = || f ||p + sup

t>0
t−αwk( f , t)p (2.18)

for every α > 0 with k = [α]+1.

For the special case when 0 < α < 1, Bα
∞(Lp) space reduces to H(α,p) space due to Das et al. [1] and

the corresponding norm is given by

|| f ||Bα
∞(Lp) = || f ||(α,p) = || f ||p + sup

t>0
t−αw( f , t)p,0 < α < 1. (2.19)

For α = 1, the norm is given by

|| f ||B1
∞(Lp) = || f ||p + sup

t>0
t−αw2( f , t)p. (2.20)

Note that || f ||B1
∞(Lp) is not same as || f ||(1,p) and the space B1

∞(Lp) includes the space H(1, p), p ≥ 1.

If we further specialize by taking p = ∞, Bα
∞, 0 < α < 1, coincides with Hα space due to Prossodorf [3]

and the norm is given by

|| f ||Bα
∞(L∞) = || f ||α = || f ||c + sup

t>0
tαw( f , t), 0 < α < 1. (2.21)

For α = 1, p = ∞, the norm is given by

|| f ||B1
∞(L∞) = || f ||c + sup

t>0
t−1w2( f , t), α = 1 (2.22)

which is different from || f ||1 and B1
∞(L∞) includes the H1 space.
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3 Main Result:

We prove the following theorem.

Theorem : Let the matrix A = (an,k) be a regular matrix , which satisfy the condition an,k ≥ 0 and an,k ≥

an,k+1.

Let 0 < α < 2 and 0 ≤ β < α . If f ∈ Bα
q (Lp), p ≥ 1 and 1 < q ≤ ∞ and let t̃n(x) be the A = (an,k)

transformation of the conjugate series, then

Case 1:(For 1 < q < ∞)

||T̃n(·)||Bβ
q (Lp)

= O
(

1

nα−β− 1
q

)
+O(an0)

{
n

∑
k=1

(
1

kα−β− 2
q

) q
q−1
}1− 1

q

Case 2:(For q = ∞)

||T̃n(·)||Bβ
∞(Lp)

= O
(

1
nα−β

)
+O(an0)

n

∑
k=1

1
kα−β

4 Additional Notations and Lemmas:

We need the following additional notations for the proof of the theorem.

ψ(x, t,u) =


ψx+t(u)−ψx(u)
ψx+u(t)−ψx(t), 0 < α < 1
ψx+t(u)+ψx−t(u)−2ψx(u)
ψx+u(t)+ψx−u(t)−2ψx(t), 1≤ α < 2

(4.23)

For k = [α]+1, we have for p≥ 1

wk( f , t)p =

{
w1( f , t)p, 0 < α < 1
w2( f , t)p, 1≤ α < 2

(4.24)

Let

T̃n(x, t) =

{
T̃n(x+ t)− T̃n(x) 0 < α < 1
T̃n(x+ t)+ T̃n(x− t)−2T̃n(x) 1≤ α < 2

(4.25)
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Using ((4.25)) and definition of wk( f , t)p, we have

wk(T̃n, t)p = ||T̃n(·, t)||p (4.26)

Using ((1.17)) and ((4.23)) respectively for the expressions T̃n(x) and ψ(x, t,u), we have

T̃n(x, t) =
−1
π

∫ π

n

0
ψ(x, t,u)K̃n(u)du+

1
π

∫
π

π

n

ψ(x, t,u)Hn(u)du (4.27)

We need the following Lemmas to prove the theorem.

Lemma 1 Let 1≤ p≤ ∞ and 0 < α < 2. If f ∈ Lp[0,2π], then for 0 < t,u≤ π

(i) ||ψ(·, t,u)||p ≤ 2wk( f , t)p

(ii) ||ψ(·, t,u)||p ≤ 2wk( f ,u)p

(iii) ||ψ·(u)||p ≤ 2wk( f ,u)p,

where k = [α]+1.

Proof: We first consider the case 0 < α < 1.

Clearly k = 1 and we can express by virtue of ((4.23))

ψ(x, t,u) =

{
ψx+t(u)−ψx(u)
ψx+u(t)−ψx(t)

as follows:

ψ(x, t,u) =

{
{ f (x+ t +u)− f (x+ t−u)}−{ f (x+u)− f (x−u)}
{ f (x+ t +u)− f (x+u− t)}−{ f (x+ t)− f (x− t)}

=

{
{ f (x+ t +u)− f (x+u)}−{ f (x−u+ t)− f (x−u)} (4.6)
{ f (x+ t +u)− f (x+ t)}−{ f (x− t +u)− f (x− t)} (4.7)

Applying Minkowski’s inequality to (4.6), we get for p≥ 1

||ψ(·, t,u)||p ≤ || f (·+ t +u)− f (·+u)||p + || f (·+ t−u)− f (·−u)||p

≤ 2w1( f , t)p, 0 < α < 1
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Similarly applying Minkowski’s inequality to (4.7), we get for p≥ 1

||ψ(·, t,u)||p ≤ 2w1( f ,u)p.

When 1≤ α < 2, clearly k = 2 and we can write

ψ(x, t,u) =


{ f (x+ t +u)− f (x+ t−u)}+{ f (x− t +u)+ f (x− t−u)}
−2{ f (x+u)− f (x−u)}
{ f (x+ t +u)− f (x− t +u)}+{ f (x+ t−u)+ f (x− t−u)}
−2{ f (x+ t)− f (x− t)}

=


{ f (x+ t +u)+ f (x+u− t)−2 f (x+u)}
−{ f (x−u+ t)+ f (x− t−u)−2 f (x−u)} (4.8)
{ f (x+ t +u)+ f (x+ t−u)−2 f (x+ t)}
−{ f (x− t +u)+ f (x− t−u)−2 f (x− t)} (4.9)

Applying Minkowski’s inequality to (4.8), we obtain for p≥ 1

||ψ(·, t,u)||p ≤ || f (·+ t +u)+ f (·+u− t)−2 f (·+u)||p

+ || f (·−u+ t)+ f (·− t−u)−2 f (·−u)||p

≤ 2w2( f , t)p

Similarly, applying Minkowski’s inequality to (4.9), we obtain for p≥ 1

||ψ(·, t,u)||p ≤ 2w2( f ,u)p

and this completes the proof of part (i) and (ii).

The proof of (iii) follows from

ψ·(u) = { f (·+u)− f (·)}−{ f (·−u)− f (·)}.

Lemma 2 Let 0 < α < 2, 0≤ β < α . If f ∈ Bα
q (Lp), p≥ 1, 1 < q < ∞, then

(i)
∫ π

n
0 |K̃n(u)|

(∫ u
0
||ψ(·,t,u)||qp

tβq
dt
t

) 1
q

du = O(1)
{∫ π

n
0

(
uα−β |K̃n(u)|

) q
q−1

du
}1− 1

q
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(ii)
∫ π

n
0 |K̃n(u)|

(∫
π

u
||ψ(·,t,u)||qp

tβq
dt
t

) 1
q

du = O(1)
{∫ π

n
0

(
uα−β+ 1

q |K̃n(u)|
) q

q−1
du
}1− 1

q

(iii)
∫ π

n
0 |Hn(u)|

(∫ u
0
||ψ(·,t,u)||qp

tβq
dt
t

) 1
q

du = O(1)
{∫

π
π

n

(
uα−β |Hn(u)|

) q
q−1 du

}1− 1
q

(iv)
∫

π
π

n
|Hn(u)|

(∫
π

u
||ψ(·,t,u)||qp

tβq
dt
t

) 1
q

du = O(1)
{∫

π
π

n

(
uα−β+ 1

q |Hn(u)|
) q

q−1
du
}1− 1

q

Proof: Applying Lemma 1(i), we get∫ π

n

0
|K̃n(u)|

(∫ u

0

||ψ(·, t,u)||qp
tβq+1 dt

) 1
q

du = O(1)
∫ π

n

0
|K̃n(u)|

(∫ u

0

(
wk( f , t)p

tα

)q

t(α−β )q dt
t

) 1
q

du

= O(1)
∫ π

n

0
|K̃n(u)|u(α−β )

(∫ u

0

wk( f , t)p

tα

dt
t

) 1
q

du

= O(1)
∫ π

n

0
|K̃n(u)|u(α−β )du

the inner integral being finite as f ∈ Bα
q (Lp). Applying Hölders inequality

= O(1)
{∫ π

n

0

(
|K̃n(u)|u(α−β )

) q
q−1

du
}1− 1

q
(∫

π

0
1qdu

) 1
q

= O(1)
{∫ π

n

0

(
|K̃n(u)|u(α−β )

) q
q−1

du
}1− 1

q

Applying Lemma 1(ii), we get∫ π

n

0
|K̃n(u)|

(∫
π

u

||ψ(·, t,u)||qp
tβq+1 dt

) 1
q

du = O(1)
∫ π

n

0
|K̃n(u)|

{∫
π

u

(
wk( f ,u)p

tβ

)q dt
t

} 1
q

du

= O(1)
∫ π

n

0
|K̃n(u)|wk( f ,u)pdu

(∫
π

u

dt
tβq+1

) 1
q

= O(1)
∫ π

n

0
|K̃n(u)|wk( f ,u)pu−β du

= O(1)
∫ π

n

0

(
wk( f ,u)p

uα+ 1
q

)
uα−β+ 1

q |K̃n(u)|du

Applying Hölder’s inequality

= O(1)
{∫ π

n

0

(
wk( f ,u)p

uα

)q du
u

} 1
q
{∫ π

n

0

(
uα−β+ 1

q |K̃n(u)|
) q

q−1
du
}1− 1

q

= O(1)
{∫ π

n

0

(
uα−β+ 1

q |K̃n(u)|
) q

q−1
du
}1− 1

q



Journal of Orissa Mathematical Society 115

As the first integral on the above is finite by hypothesis. Third part and 4th part of the Lemma follows

from above replacing K̃n(u) by Hn(u).

Lemma 3 Let 0 < α < 2. Suppose that 0≤ β < α . If f ∈ Bα
q (Lp), p≥ 1 and q = ∞, then

sup
0<t,u≤π

t−β ||ψ(·, t,u)||p = O(uα−β )

Proof: For 0 < t ≤ u≤ π , applying Lemma 1(i), we have

sup
t,

0<t≤u≤π

t−β ||ψ(·, t,u)||p = sup
t,

0<t≤u≤π

tα−β (t−α ||ψ(·, t,u)||p)

≤ 4uα−β sup
t
(t−αwk( f , t)p)

= O(uα−β ), by the hypothesis.

Next for 0 < u≤ t ≤ π , applying Lemma 1(ii), we get

sup
t,

0<u≤t≤π

t−β ||ψ(·, t,u)||p ≤ 4wk( f ,u)p sup
t,

0<u≤t≤π

t−β

≤ 4uα−β sup
u
(u−αwk( f ,u)p)

= O(uα−β ), by the hypothesis

and this completes the proof.

Lemma 4 Let the matrix A = (an,k) and kernel K̃n(u) and Hn(u) of the conjugate Fourier series be

defined as in ((1.10)) and ((1.11)).

Let there exist a positive non-decreasing sequence (µn), then for 0 < u≤ π

K̃n(u) = O
(

1
u

)
.

Hn(u) = O
(an0

u2

)
Proof. From ((1.10)), we have

K̃n(u) =
∞

∑
k=0

an,kD̃k(u) ≤ O
(

1
u

)(
∞

∑
k=0
|an,k|

)(
since D̃k(u) = O

(
1
u

))
≤ O

(
1
u

)
( by regularity condition (1.8))
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Now, from ((1.11)), we have

Hn(u) =
∞

∑
k=0

an,k
cos(k+ 1

2)u
sin u

2
= R

[
eiu/2

sin u
2

∞

∑
k=0

an,keiku

]

= R

[
eiu/2

sin u
2

(
µn

∑
k=0

+
∞

∑
k=µn+1

)
an,keiku

]
= A+B

where

A = R

[
eiu/2

sin u
2

µn

∑
k=0

an,keiku

]

= O
(

1
u

)∣∣∣∣∣ µn

∑
k=0

an,keiku

∣∣∣∣∣( since ank ≥ 0 and ↓)

Applying Abel’s transformation, we have

= O
(

1
u

)[∣∣∣∣∣ µn

∑
k=0

(an,k−an,k+1)
k

∑
r=0

eiru +an,µn

µn

∑
r=0

eiru

∣∣∣∣∣
]

= O
(

1
u

)[ µn

∑
k=0
|an,k−an,k+1|

∣∣∣∣∣ k

∑
r=0

eiru

∣∣∣∣∣+an,µn+1

∣∣∣∣∣ µn

∑
r=0

eiru

∣∣∣∣∣
]

= O
(

1
u

)[ µn

∑
k=0
|an,k−an,k+1|+ |an,µn+1 |

]

= O
(

1
u

)[ µn

∑
k=0

(an,k−an,k+1)+an,µn+1

]
= O

(an0

u2

)

B = R

[
eiu/2

sin u
2

∞

∑
k=µn+1

an,keiku

]
= O

(
1
u

)
anµn

∣∣∣∣∣ ∞

∑
k=µn+1

eiku

∣∣∣∣∣
= O

(
1
u2

)
anµn+1 = O

(an0

u2

)
Hence

Hn(u) = O
(an0

u2

)
+O

(an0

u2

)
= O

(an0

u2

)
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5 Proof of Theorem

Case 1: For (1 < q < ∞)

We first consider the case 1 < q < ∞.

We have for p≥ 1 and 0≤ β < α < 2, by use of Besov norm defined in ((2.17)) for Bα
q (Lp) is

||T̃n(·)||Bβ
q (Lp)

= ||T̃n(·)||p + ||wk(T̃n, ·)||β ,q (5.28)

Applying Lemma 1(iii) in equation ((1.17)), we have

||T̃n(·)||p ≤ 1
π

∫ π

n

0
||ψ·(u)||p|K̃n(u)|du+

1
π

∫
π

π

n

||ψ·(u)||p|Hn(u)|du

=
2
π

[∫ π

n

0
|K̃n(u)|wk( f ,u)pdu+

∫
π

π

n

|Hn(u)|wk( f ,u)pdu
]

Applying Hölder’s inequality, we have

||T̃n(·)||p ≤ 2
π

[{∫ π

n

0

(
|K̃n(u)|uα+ 1

q

) q
q−1

du
}1− 1

q
{∫ π

n

0

(
wk( f ,u)p

uα+ 1
q

)q

du
} 1

q

+

{∫
π

π

n

(
|Hn(u)|uα+ 1

q

) q
q−1

du
}1− 1

q
{∫

π

π

n

(
wk( f ,u)p

uα+ 1
q

)q

du
} 1

q
]

= O(1)

[{∫ π

n

0

(
|K̃n(u)|uα+ 1

q

) q
q−1

du
}1− 1

q

+

{∫
π

π

n

(
|Hn(u)|uα+ 1

q

) q
q−1

du
}1− 1

q
]

= O(1) [I + J] , (say)(5.29)

By using Lemma 4 in I of ((5.29)), we have

I =

{∫ π

n

0
(|K̃n(u)|uα+ 1

q )
q

q−1 du
}1− 1

q

= O(1)
{∫ π

n

0

(
uα+ 1

q−1
) q

q−1
du
}1− 1

q

= O(1)
{∫ π

n

0

(
u

qα

q−1−1
)

du
}1− 1

q

= O
(

1
nα

)
(5.30)
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Applying Lemma 4 in J of ((5.29)), we have

J =

{∫
π

π

n

(
|Hn(u)|uα+ 1

q

) q
q−1

du
}1− 1

q

= O(an0)

{∫
π

π

n

(
uα+ 1

q−2
) q

q−1
du
}1− 1

q

= O(an0)

{
n−1

∑
k=1

∫ π

k

π

k+1

u(α+ 1
q−2)· q

q−1 du

}1− 1
q

= O(an0)

{
n

∑
k=1

∫ π

k

π

k+1

u(α+ 1
q−2)· q

q−1 du

}1− 1
q

= O(an0)

{
n

∑
k=1

(
1

k(α−
1
q )

) q
q−1
}1− 1

q

(5.31)

Using ((5.30))and ((5.31)) and we have from ((5.29)),

||T̃n(·)||p = O
(

1
nα

)
+O(an0)

{
n

∑
k=1

(
1

kα− 1
q

) q
q−1
}1− 1

q

(5.32)
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By using Besov space, we have

||wk(T̃n, ·)||β ,q =

{∫
π

0

(
t−β wk(T̃n, t)p

)q dt
t

} 1
q

≤

[∫
π

0

(
||T̃n(·, t)||p

tβ

)q
dt
t

] 1
q

=

[∫
π

0

{∫
π

0
|T̃n(x, t)|pdx

} q
p dt

tβq+1

] 1
q

=

[∫
π

0

{∫
π

0

∣∣∣∣−1
π

∫ π

n

0
ψ(x, t,u)K̃n(u)du+

1
π

∫
π

π

n

ψ(x, t,u)Hn(u)du
∣∣∣∣p dx

} q
p dt

tβq+1

] 1
q

≤ 1
π

[∫
π

0

dt
tβq+1

{∫
π

0

∣∣∣∣∫ π

n

0
ψ(x, t,u)K̃n(u)du+

∫
π

π

n

ψ(x, t,u)Hn(u)du
∣∣∣∣p dx

} q
p
] 1

q

=
1
π

[∫
π

0

dt
tβq+1

∣∣∣∣∣∣∣∣∫ π

n

0
ψ(·, t,u)K̃n(u)du+

∫
π

π

n

ψ(·, t,u)Hn(u)du
∣∣∣∣∣∣∣∣q

p

] 1
q

≤ 1
π

∫ π

0

 ||∫ π

n
0 ψ(·, t,u)K̃n(u)du||p + ||

∫
π
π

n
ψ(·, t,u)Hn(u)du||p

tβ+ 1
q

q

dt


1
q

,

by Minkowski’s inequality.

Again applying Minkowski’s inequality, we get

||wk(T̃n, ·)||β ,q ≤ 1
π

[∫
π

0

(
||
∫ π

n
0 ψ(·, t,u)K̃n(u)du||p

tβ+ 1
q

)q

dt

] 1
q

1
π

[∫
π

0

(
||
∫

π
π

n
ψ(·, t,u)Hn(u)du||p

tβ+ 1
q

)q

dt

] 1
q

= O(1)[I′+ J′], (say)(5.33)

I′ =

[∫
π

0

(
||
∫ π

n
0 ψ(·, t,u)K̃n(u)du||p

tβ+ 1
q

)q

dt

] 1
q

=

{∫
π

0

(∫
π

0

∣∣∣∣∫ π

n

0
ψ(x, t,u)K̃n(u)du

∣∣∣∣p dx
) q

p dt
tβq+1

} 1
q

(5.34)
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By generalized Minkowski’s inequality, we get

I′ =

[∫
π

0

{∫ π

n

0

(∫
π

0

∣∣∣ψ(x, t,u)K̃n(u)
∣∣∣p dx

) 1
p

du

}q
dt

tβq+1

] 1
q

=

[∫
π

0

{∫ π

n

0

||ψ(x, t,u)||p|K̃n(u)|du

tβ+ 1
q

}q

dt

] 1
q

Again applying generalized Minkowski’s inequality, we get

I′ ≤
∫ π

n

0

(∫
π

0

||ψ(x, t,u)||qp|K̃n(u)|q

tβq+1 dt

) 1
q

du

=
∫ π

n

0
|K̃n(u)|du

(∫
π

0

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

≤
∫ π

n

0
|K̃n(u)|du

((∫ u

0
+
∫

π

u

)
||ψ(x, t,u)||qp

tβq+1 dt
) 1

q

≤
∫ π

n

0
|K̃n(u)|

(∫ u

0

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

du+
∫ π

n

0
|K̃n(u)|

(∫
π

u

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

du

(by the inequality (x+ y)r ≤ xr + yr,0 < r ≤ 1.)

I′ = I′1 + I′2, (say)(5.35)

Applying Lemma 2(i), we get

I′1 = O(1)
{∫ π

n

0

(
|K̃n(u)|uα−β

) q
q−1

du
}1− 1

q

Applying Lemma 4, we get

I′1 = O(1)
{∫ π

n

0

(
uα−β−1

) q
q−1

du
}1− 1

q

= O(1)
{∫ π

n

0
u

q
q−1 (α−β−1)du

}1− 1
q

= O(1)
{∫ π

n

0
u

q
q−1 (α−β− 1

q )−1du
}1− 1

q

= O
(

1

nα−β− 1
q

)
(5.36)
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I′2 =
∫ π

n

0
|K̃n(u)|

(∫
π

u

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

du

Applying Lemma 2(ii)

I′2 = O(1)
{∫ π

n

0

(
|K̃n(u)|uα−β+ 1

q

) q
q−1

du
}1− 1

q

Applying Lemma 4, we get

I′2 = O(1)
{∫ π

n

0

(
uα−β+ 1

q−1
) q

q−1
du
}1− 1

q

= O(1)
{∫ π

n

0
u

q
q−1 (α−β−1+ 1

q )du
}1− 1

q

= O(1)
{∫ π

n

0
u

q
q−1 (α−β )−1du

}1− 1
q

= O
(

1
nα−β

)
(5.37)

From ((5.35)), ((5.36)) and ((5.37)), we get

I′ = O
(

1

nα−β− 1
q

)
(5.38)

J′ =

[∫
π

0

(
||
∫

π
π

n
ψ(·, t,u)Hn(u)du||p

tβ+ 1
q

)q

dt

] 1
q

=

{∫
π

0

(∫
π

0

∣∣∣∣∫ π

π

n

ψ(x, t,u)Hn(u)du
∣∣∣∣p dx

) q
p dt

tβq+1

} 1
q

Proceeding as above as in I′.

J′ ≤
∫

π

π

n

|Hn(u)|
(∫

π

0

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

du

=
∫

π

π

n

|Hn(u)|
((∫ u

0
+
∫

π

u

)
||ψ(x, t,u)||qp

tβq+1 dt
) 1

q

du

≤
∫

π

π

n

|Hn(u)|
(∫ u

0

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

du+
∫

π

π

n

|Hn(u)|
(∫

π

u

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

du

(by the inequality (x+ y)r ≤ xr + yr,0 < r ≤ 1.)

= J′1 + J′2, (say)(5.39)
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Now,

J′1 =
∫

π

π

n

|Hn(u)|
(∫ u

0

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

du

Applying Lemma 2(iii), we get

J′1 = O(1)
{∫

π

π

n

(
|Hn(u)|uα−β

) q
q−1

du
}1− 1

q

Applying Lemma 4, we get

J′1 = O(an0)

{∫
π

π

n

(
uα−β−2

) q
q−1

du
}1− 1

q

= O(an0)

{∫
π

π

n

u
q

q−1 (α−β−2)du
}1− 1

q

= O(an0)

{
n

∑
k=1

∫ π

k

π

k+1

u
q

q−1 (α−β−2)du

}1− 1
q

Let g(u) =
(
uα−β−2

) q
q−1 and G(u) is a primitive of g(u), then

∫ π

k

π

k+1

(
uα−β−2

) q
q−1

du =
∫ π

k

π

k+1

g(u)du

= G
(

π

k

)
−G

(
π

k+1

)
=

(
π

k
− π

k+1

)
g(c) for some

π

k+1
< c <

π

k

= O(1)
(

1

kα−β− 2
q

) q
q−1

J′1 = O(an0)

{
n

∑
k=1

∫ π

k

π

k+1

(
1

kα−β− 2
q

) q
q−1
}1− 1

q

(5.40)

Now,

J′2 =
∫

π

π

n

|Hn(u)|
(∫

π

u

||ψ(x, t,u)||qp
tβq+1 dt

) 1
q

du

Applying Lemma 2(iv), we get

J′2 = O(an0)

{∫
π

π

n

(
|Hn(u)|uα−β+ 1

q

) q
q−1

du
}1− 1

q
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Applying Lemma 4, we get

J′2 = O(an0)

{∫
π

π

n

(
uα−β−2+ 1

q

) q
q−1

du
}1− 1

q

= O(an0)

{
n

∑
k=1

∫ π

k

π

k+1

u
q

q−1 (α−β−2+ 1
q )du

}1− 1
q

Proceeding as in J′1, we have

J′2 = O(an0)

{
n

∑
k=1

(
1

kα−β− 1
q

) q
q−1
}1− 1

q

(5.41)

J′ = O(an0)

{
n

∑
k=1

(
1

kα−β− 2
q

) q
q−1
}1− 1

q

(5.42)

From ((5.35)), ((5.38)) and ((5.42)), we get

||wk(T̃n, ·)||β ,q = O
(

1

nα−β− 1
q

)
+O(an0)

{
n

∑
k=1

(
1

kα−β− 2
q

) q
q−1
}1− 1

q

(5.43)

From ((5.28)),((5.40)) and ((5.43)), for 1 < q < ∞, o≤ β < α < 2, f ∈ Bα
q (Lp), p≥ 1, we have

||T̃n(·)||Bβ
q (Lp)

= O
(

1

nα−β− 1
q

)
+O(an0)

{
n

∑
k=1

(
1

kα−β− 2
q

) q
q−1
}1− 1

q

(5.44)

This completes the proof of Case 1.

Case 2 (q = ∞)

Now, we consider the case q = ∞.

||T̃n(·)||Bβ
∞(Lp)

= ||T̃n(·)||p + ||wk(T̃n, ·)||β ,∞ (5.45)
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||wk(T̃n, ·)||β ,∞ = sup
t>0

||T̃n(·, t)||p
tβ

= sup
t>0

t−β

π

{∫
π

0

∣∣∣∣−∫ π

n

0
ψ(x, t,u)K̃n(u)du+

∫
π

π

n

ψ(x, t,u)Hn(u)du
∣∣∣∣p dx

} 1
p

Applying Minkowski’s inequality, we have

||wk(T̃n, ·)||β ,∞ ≤ sup
t>0

t−β

π


(∫

π

0

∣∣∣∣∫ π

n

0
ψ(x, t,u)K̃n(u)du

∣∣∣∣p dx
) 1

p

+

(∫
π

0

∣∣∣∣∫ π

π

n

ψ(x, t,u)Hn(u)du
∣∣∣∣p dx

) 1
p


Applying Generalized Minkowski’s inequality, we have

||wk(T̃n, ·)||β ,∞ = sup
t>0

t−β

π

{∫ π

n

0

(∫
π

0
|ψ(x, t,u)|p |K̃n(u)|dx

) 1
p

du+
∫

π

π

n

(∫
π

0
|ψ(x, t,u)|p |H(u)|pdx

) 1
p

du

}

= sup
t>0

t−β

π

{∫ π

n

0
||ψ(x, t,u)||p|K̃n(u)|du+

∫
π

π

n

||ψ(x, t,u)||p|H(u)|du
}

≤ 1
π

{∫ π

n

0
|K̃n(u)|

(
sup
t>0

||ψ(x, t,u)||p
tβ

)
du+

∫
π

π

n

|Hn(u)|
(

sup
t>0

||ψ(x, t,u)||p
tβ

)
du
}

Using Lemma 3, we have

||wk(T̃n, ·)||β ,∞ ≤ O(1)
∫ π

n

0
|K̃n(u)|uα−β du+O(1)

∫
π

π

n

|Hn(u)|uα−β du

= O(1)[I
′′
+ J

′′
], (say)(5.46)

Using Lemma 4 in I
′′

and J
′′
, we have

I
′′

= O(1)
∫ π

n

0
|K̃n(u)|uα−β du

= O(1)
∫ π

n

0
uα−β−1du = O

(
1

nα−β

)
(5.47)

J
′′

= O(1)
∫

π

π

n

|Hn(u)|uα−β du

= O(an0)
∫

π

π

n

uα−β−2du

= O(an0)
n−1

∑
k=1

∫ π

k

π

k+1

uα−β−2du

= O(an0)
n

∑
k=1

∫ π

k

π

k+1

uα−β−2du

= O(an0)

{
n

∑
k=1

1
kα−β

}
(5.48)
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From ((5.46)), ((5.47)) and ((5.48)), we have

||wk(T̃n, ·)||β ,∞ = O
(

1
nα−β

)
+O(an0)

n

∑
k=1

(
1

kα−β

)
(5.49)

Now,

||T̃n(·)||p ≤ 1
π

∫ π

n

0
||ψ(u)||p|K̃n(u)|du+

1
π

∫
π

π

n

||ψ(u)||p|Hn(u)|du

Applying Lemma 1(iii), we have

||T̃n(·)||p ≤ 2
π

∫ π

n

0
wk( f ,u)p|K̃n(u)|du+

1
π

∫
π

π

n

wk( f ,u)p|Hn(u)|du

= O(1)
∫ π

n

0
uα |K̃n(u)|du+O(1)

∫
π

π

n

uα |Hn(u)|du

= O(1)
∫ π

n

0
uα−1du+O(an0)

∫
π

π

n

uα−2

= I
′′′
+ J

′′′
, (say)(5.50)

Using Lemma 4 in I
′′′

and J
′′′

, we have

I
′′′

= O(1)
∫ π

n

0
uα−1du

= O
(

1
nα

)
(5.51)

J
′′′

= O(an0)
∫

π

π

n

uα−2

= O(an0)

{
n−1

∑
k=1

(∫ π

k

π

k+1

uα−2du

)}

= O(an0)

{
n

∑
k=1

(∫ π

k

π

k+1

uα−2du

)}

= O(an0)
n

∑
k=1

1
kα

(5.52)

From ((5.50)), ((5.51)) and ((5.52)), we have

||T̃n(·)||p = O
(

1
nα

)
+O(an0)

n

∑
k=1

(
1

kα

)
(5.53)
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From ((5.49)) and ((5.53)), for q = ∞, 0≤ β < α < 2, f ∈ Bα
q (Lp), p≥ 1, we have

||T̃n(·)||Bβ
∞(Lp)

= O
(

1
nα−β

)
+O(an0)

n

∑
k=1

1
kα−β

This completes the proof of Case 2.

Combining the Case 1 and Case 2, we obtain the proof of the theorem.
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