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Degree of Approximation of Conjugate Fourier
Series of Functions in the Besov space by Matrix
Mean
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Abstract

he paper studies the degree of approximation of functions by their Fourier series in the

Besov space by matrix mean and this generalizing many known results.
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1 Introduction

Let f be a 27 periodic function and let f € L,[0,2x], p > 1. The fourier series of f at x is given by

1 oo
S0+ Y (ancosnx+ b, sinnx) (1.1)

n=1

The conjugate series of ((1.1)) is given by

s

(ax sinkx — by coskx). (1.2)

k=1
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Let S, (x) be the nth partial sum of conjugate series ((1.2))) given by [Zygmund [6], Vol I, page-49]

Su(x) = — Y, (t)D,(t)dt (1.3)
where
ye(t) = fx+1) = flx—1) (1.4)

and the conjugate Dirichlet kernel is defined by

1
cos § —cos(n+ 5)t

n
1.5 D,(t) =) sinkt =
(1) () k; 2sin%t

Let A = (a,x) be an infinite matrix.

We assume that elements of the matrix A = (a,, ;) satisfy the following regularity conditions

(1.6) HAH:supi\anJJ <o
n k=0
(1.7) (anx) — 0 as n — oo and k is fixed
and
(1.8) iamk:lforeachn:0,1,2-~-.
k=0

Let 7,(x) denote the A = (a, ) transformation of the conjugate series ((I.2)); that is

(1.9) () = Y anSi(x)
k=0

(i) Ipf(2) = f(2), f€A(p);

.. _ > n+ n zf'(z
W) St =a+ E e, 20 =L peap)
n=1

oo

(i) S f@)=arz+ Y (n+ a1 2 =2f(2), £ €A(L).

n=1
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We use the following notations throughout.

Kn(t) =Y aniDi(t) (1.10)
=0
> cos(k+ 1)t
H,(t)=Y ap—-—2- 1.11
) kg{)a * 2sin%t (L1
f(x'e)——l/” (r)lcotltdrg>o (1.12)
&)= f Yy ot ‘

flx)= lirr(l) f(x;€), whenever the limit exists.
£—
~ . < T
T (x) =1n(x) — f(x;—) (1.13)

It is known ([6])) that for any integrable f the function f exists almost everywhere. It is easy to see that

~ 1 1
K,(t) = Ecotit —H, (1) (1.14)
() = —1/”%(1)1? Hdt

_ _,/ R dt_*/ R

- ok ()dH—fX% %/

T Jo

cot — t— )}dt

(1.15)
Using ((1.3)) in ((T.9)) and there after making use of the notations given in ((I.10)) to ((I.14))), we get
~ —1
/ VR0 + () + / Y1) H (1) (1.16)
Using ((T.13)) in ((1.16)), we have

T _1/ W), () + ~ /wx H, (u)du (1.17)
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2 Definitions and Notations

Modulus of Continuity:
Let A = R,R+[a,b] C R or T (which usually taken to be R with identification of points modulo 27).
The modulus of continuity w(f,7) = w(t) of a function f on A can be defined as
wt)=w(f,r)= sup  |f(x)=f(y)],z>0.

‘x__y‘gtv
x,y€A

Modulus of Smoothness:

The k' order modulus of smoothness [2] of a function f:A — R is defined by

wi(f,1) = sup {sup|AX(f.x)|:x,x+kh €A}, 1>0 2.1
0<h<t
where
‘ k
Afx) =Y (=) i | fx+ih),kEN. (2.2)
i=0

For k = 1,w;(f,t) is called the modulus of continuity of f. The function w is continuous at t = 0 if
and only if f is uniformly continuous on A, that is f € ¢(A). The k”* order modulus of smoothness of
feL,(A),0<p<eorof feé(A),ifp=ooisdefined by

wi(f,t)p = sup [|AK(f,)][p.t >0 (2.3)

0<h<t

if p> 1,k =1, then wi(f,t), = w(f,t), is a modulus of continuity (or integral modulus of continuity).
If p=-co,k=1and f is continuous then wy(f,), reduces to modulus of continuity wi(f,t) or w(f,t).
Lipschitz Space:
If f€¢(A) and

w(f,t) =0(%),0<a<1 2.4)



Journal of Orissa Mathematical Society 107

then we write f € Lipa. If w(f,t) = O(t) as t — O+ (in particular (1.9) holds for & > 1) then f reduces
to a constant.
If feL,(A),0 < p<coand

w(f,1),=0(%),0< o<1 (2.5)
then we write f € Lip(at,p), 0 < p<oo, 0 <@ < 1.
The case ¢ > 1 is of no interest as the function reduces to a constant, whenever

w(f,t), =0(t) as t = 0+ (2.6)

We note that if p = and f € ¢(A), then Lip(a., p) class reduces to Lip a class.
Generalized Lipschitz Space:

Let o > 0 and suppose that k = [&¢] + 1. For f € L,(A), 0 < p < oo, if
wi(f,1) =0(t%),t >0 2.7
then we write
felLip*(a,p),a>0,0<p <o (2.8)

and say that f belongs to generalized Lipschitz space. The seminorm is then

’f‘Lip*(a,Lp) =sup(t “wi(f,1)p)-
>0

It is known ([2], p-52) that the space Lip*(a, L) contains Lip(c,L,). For 0 < & < 1 the spaces coincide,
(for p = oo, it is necessary to replace L. by ¢ of uniformly continuous function on A). For 0 < o < 1 and
p = 1 the space Lip*(c,L,) coincide with Lipc.

For o =1, p = o, we have

Lip(1,¢) =Lip 1 (2.9)

but

Lip*(1,6) =z (2.10)
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is the Zygmund space [5] which is characterized by ((2.7)) with k = 2.
Holder (H,) Space:

ForO< o <1,let

Ho ={f € Con : w(f,1) =0(t*)}. (2.11)

It is known [3] that H, is a Banach Space with the norm || - || defined by

f e = 1 f]]c +supt~%w(t), 0 < ¢ < 1 (2.12)
t>0
A llo =171l
and
Hy CHg CCon, 0<B << (2.13)
H, ;) Space:
ForO < a <1, let
Hgp) ={f €Ly0,27]: 0 < p <oo,w(f 1), = 0(t%)} (2.14)
and introduce the norm || - [[ (4 ) as follows
A ap) = ||f\|p+sugf“W(f,f)p, 0<a<l (2.15)
>
[ h0.p) = lIA11p-

It is known [1] that H(,, ,) is a Banach space for p > 1 and a complete p-normed space for 0 < p < 1.
Also

Higp) CHpp) CLp,0<B<a<l. (2.16)

Note that H(4..) is the space Hy defined above.
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For study of degree of approximation problems the natural way to proceed to consider with some
restrictions on some modulus of smoothness as prescribed in Hq and H(q ) spaces. As we have seen
above only a constant function satisfies Lipschitz condition for o > 1. However for generalized Lipschitz
class there is no such restriction on . We required a finer scale of smoothness than is provided by
Lipschitz class. For each o > 0 Besov developed a remarkable technique for restricting modulus of
smoothness by introducing a third parameter ¢ (in addition to p on &) and applying ¢ - g norms (rather
than @, o norms) to the modulus of smoothness wi(f,-), of f.

Besov space:

Let o > 0 be given and let k = [a + 1]. For 0 < p, g < oo, the Besov space ([2], p-54)B¢ (L)) is defined

as follows:
BE(Ly) =1 € Ly flngia,) = k() i) is finite}
where

f(;o(fawk(faf)p)q%)é, 0<g<oo

supt = “wi(f,1)p, q=c.
>0

Wi (fs ) (o) =

It is known ([2], p-55) that ||wi(f,")||(a.q) is @ seminorm if 1 < p,g < oo and a quasi-seminorm in other
cases.

The Besov norm for By (L)) is

A lBg e,y = [1F11p + Wi (5 ) () (2.17)

We know ([2], p-56, [4], p-236) the following inclusion relations.
For fixed o and p

B(qX(LP) - B(qx] (Lp)vq <4q1.

For fixed p and ¢
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For fixed o and ¢

Bg(Ly) C By (Lp,),p1 < p-

Special cases of Besov space:
For g = ,B%(L,),a > 0,p > 1is same as Lip*(a,L,) the generalized Lipschitz space and the corre-

sponding norm || - [|pa(z,,) is given by

1 lBew,) = Hfl\p+sugt‘“w/c(f,t)p (2.18)
t>

for every a0 > 0 with k = [a] + 1.
For the special case when 0 < & < 1, BZ(L),) space reduces to H ,) space due to Das et al. [1] and

the corresponding norm is given by

A lsew,) = 1Al @p) = [1/1lp +Sugt‘“W(f,t)p,0 <a<l (2.19)
>

For o¢ = 1, the norm is given by

A B, = HprJr?ggfaWz(fJ)p- (2.20)

Note that || f|[py(z,) is not same as ||f|(1 ) and the space BL(L,) includes the space H(1,p), p > 1.
If we further specialize by taking p = oo, B, 0 < a < 1, coincides with H,, space due to Prossodorf [3]

and the norm is given by

A ey = [1f1la = |\f||c+sugt°‘W(fJ), 0<o <l (2.21)
t>

For a =1, p = oo, the norm is given by

1By = |\f|!c+sugflm(f,t), a=1 (2.22)
>

which is different from ||f||; and B (L) includes the H; space.
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3 Main Result:

We prove the following theorem.
Theorem : Let the matrix A = (a, ) be a regular matrix , which satisfy the condition a,, x > 0 and a,, x >
Apk+1-

Let0<a<2and0< B <o If f€BZF(Ly),p>1and 1 <q<ooand let7,(x) be the A = (a,x)
transformation of the conjugate series, then

Case 1:(For 1 < g < o)

g y1-1
1 L IR
O(an
) ol {kz () }

170, = 0
Case 2:(For g = )

17, = ©(5ap ) +Olam) ¥

4 Additional Notations and Lemmas:

We need the following additional notations for the proof of the theorem.

4.23) l//(X,t,u) — - II/X(I)’ O<a<l1

Viru(t) + Yo (t) = 294(1), 1< <2

For k = [a] + 1, we have for p > 1

(4.24) wi(f31)p

Let

(4.25)
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Using ((4.25)) and definition of wy(f,),, we have

wi(Tast)p = [ITa( 1)1l

(4.26)

Using ((T.17)) and ((@.23)) respectively for the expressions 7,,(x) and y(x,t,u), we have

/l//x,t,u u)du+ — /llfx,t,u) W (u)du

We need the following Lemmas to prove the theorem.

Lemmal Let 1 <p<ooand0<a <2 If f€L,[0,2x], thenfor0 <t,u<m
O [ 6u)llp <2wi(f1),
(i) [[w(,z,u)llp < 2wi(f,u)p

(i) [|ye(u)|lp < 2welfou)p,

where k = [a] + 1.

Proof: We first consider the case 0 < o < 1.

Clearly k = 1 and we can express by virtue of ({.23))

) = Wit (1) — W (u0)
v { Vs () — W)
as follows:
wix,tu) = { fOx+t+u)—fx+t—u)} —{f(x+u)— flx—u)}

foetu)} ={fx—ut1) = flx—u)}

{f( )= /(
{ftitu) = fetu—0)} ={f(x+1) = flx—1)}
{/( )= /(
{/( )= fx+0)} —{fe—t+u) = flx—1)}

Applying Minkowski’s inequality to (4.6), we get for p > 1

4.27)

w(t,u)ll, < [IfC+t+u)=fC+u)ll,+fC+1—u)—f(-—u)ll,

< 2wi(f,1)p, O0<a<1
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Similarly applying Minkowski’s inequality to (4.7), we get for p > 1

’|W('vtau)||[7 < 2W1(fv”)17'

When 1 < o < 2, clearly kK = 2 and we can write

{fx+r+u)—fx+t—uw)}+{f(x—t4+u)+ fx—1—u)}
—2{f(x+u) = flx—u)}

{foctitu) = fe—t+u)p +{fx+1—u)+ fx—1—u)}
—2{f(x+1) = flx—1)}

{fx+t+u)+ flx+u—t)—2f(x+u)}
—{fx—u+t)+ fx—t—u)—2f(x—u)} (4.8)
{fx+t+u)+ fx+1—u)—2f(x+1)}
—{f—t+u)+fx—t—u) =2f(x—1)} (4.9)

Applying Minkowski’s inequality to (4.8), we obtain for p > 1

y(x,tu) =

G nwlly < (IfCHi+u)+f(Hu—1)=2f(+u)ll,
+ fC—ut) +f(—t—u) =2f(—ullp

< 2W2(f7t)17

Similarly, applying Minkowski’s inequality to (4.9), we obtain for p > 1

HW('?Iau)HP < 2W2(f7u)17

and this completes the proof of part (i) and (ii).

The proof of (iii) follows from

v () ={f(+u)=fO) —{f(—u) = f()}-

Lemma2 Let0<a <2 0<B <o IffeBY(Ly),p>1,1<q< oo, then

1

q

) Ji 1R (Jy 1l ””‘i’) du :0(1){foif (uamgn(@)qqldu}l
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z Stu)llp de é T o— %1 l_é
Gii) g ()| (J3 PE5208 ) = 0(1) { [ (u P | ()]) " e}

w0 0] (7 ) = o) { 7 (P ) )

Proof: Applying Lemma 1(i), we get

1
ll/ Shu (I Wk f, dt\ ¢
/ 1K, (u (/ I s ”pdt) du = 0O(1) A ]Kn(u)|</0< (toc )) a—B)q t> du
z u A
D [ 1RGP ( | W"(f’t)l’dtyd
0 0 o t
0 [ R
0
the inner integral being finite as f € B (L,). Applying Holders inequality
T _ 9 1-1 T 1
:0(1){/” (]Kn(u)\u(o‘*ﬁ)y’l du} ' (/ 1‘1du>q
0 0
z q 1-
=0(1) {/ (yKn(u)|u<afﬁ>)q*‘ du}
0
Applying Lemma 1(ii), we get
1
[y (t,u)llp _ s ™ (wi(fou)p\ T dt
/yK (/ e ar “du = 0(1)/0 \Kn(u)]/u - 4 au
"= T odr \
) [ Rt ([ i)

D [ Rl P
—~o(1) /0: (Wk(f")"> u® PR (1)

uOth

ey

Applying Holder’s inequality
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As the first integral on the above is finite by hypothesis. Third part and 4th part of the Lemma follows
from above replacing K,, (1) by H,,(u).

Lemma 3 Let 0 < a < 2. Suppose that0 < < a. If f € BJ(Lp,), p > 1 and q = oo, then

sup 1P|y (-, t,u)ll, = O F)

0<tu<wm

Proof: For 0 <t <u <, applying Lemma 1(i), we have

SItlp t_ﬂHlI/('atau)HP = S';lp ta_ﬁ(t_a||ll/('7t>u)”17)
0<t<u<nm 0<t<u<n

< 4 Psup(twi(f,1),)
t
= 0w®P), by the hypothesis.

Next for 0 < u <t < 7, applying Lemma 1(ii), we get

Slt'lp tiﬁ”lI/(’anu)HP S 4Wk(f7u)l7 Slt'lp tiﬁ
0<uét§7r 0<uét§7r

< 4P sup(uwi(f,u),)
u
= O®u*P), by the hypothesis

and this completes the proof.

Lemma 4 Let the matrix A = (a, ) and kernel K, (1) and H,(u) of the conjugate Fourier series be

defined as in ((1.10)) and ((1.11)).

Let there exist a positive non-decreasing sequence (W), then for 0 <u < 1

Proof. From ((1.10)), we have

B = L aubito) < o) (gomn,kr) (since B =0 1))

1
0 <u> ( by regularity condition (1.8))

IN
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Now, from ((1.11))), we have

> cos(k+1)u _r [e"“/2 > .

Hn(u) = Z An U — amkel
k=0 ) S5 =0
ezu/Z IJn oo k
= R|—; Z—i— Z anxe"| =A+B
sIn E k=0 k:ﬂ)1+l
where
eiu/2 ,un
k
A = R|— ) apxe™
sing /=

Hn

Z an,keiku

('since an > 0and |)

Applying Abel’s transformation, we have

1 .u'n k . /Jn .
I ko [T
Z elru +an7“-n+l Zelru

r=0 r=0

1 [ &
u> Y lank — anir| +lang,., |
k=0

(
(
_ o(i) g\an,k—an,km
(
(

1 [ Hn

m Z (Ang — Anjs1) +ang,.,,
| k=0

a

=)

Z eiku

k:.un“r]

1
— 0 ; anun

Hence
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5 Proof of Theorem

Case 1: For (1 < g < o)
We first consider the case 1 < g < oo,

We have for p > 1 and 0 < § < a < 2, by use of Besov norm defined in ((2.17)) for B (L,) is

1T O g,y = ITaCO o+ wi(Ta ) p.g (5.28)

Applying Lemma 1(iii) in equation ((1.17)), we have

T < Il [yl

T
no o~

= 2 Rt /;,”|Hn<u>|wk<f,u>pdu]

T

Applying Holder’s inequality, we have

T, < i[{/o (’E”(”)|Ma+‘lf>’qldu}l_:’{/0: (W)qdu}é
_q_ 1

(5.29) = OM)[I+J], (say)

By using Lemma 4 in I of ((5.29)), we have

(5.30) =0 <a>
n
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Applying Lemma 4 in J of ((5.29)), we have

(5.31) = O(an)

Using ((5.30))and ((5.31)) and we have from ((5.29)),

\!E(-)Hp—o(nla) +0(“"°>{,§3 (kal_‘.{yl}l; (5.32)
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By using Besov space, we have

Wie(Ts )1 4

IN

IN

IN

81—

q
»odt
w(x,1)] dx}p

thJrl

—1
/ II/ X, t l/l

/0 tﬁqul{

/0 tﬁq-ﬁ-l

A

7t7”

]

1
q

W) du+ — /l//x,t,u) W (u)du

du+/

(-, t,u)H,(u)du

1

q]q
p

by Minkowski’s inequality.

Again applying Minkowski’s inequality, we get

Wi(Ts )| g

(5.33)

(5.34)

N

I/

Py oar ]
dx} ot

du+/ v (x,t,u)H,(u)du

119

(1 >du|p> dtr

_/” 1§ W tRawdull, + 11 SZ w0l T°
dar|
0 tﬂ+5
Ul (e <,r,u> wdul, 1 1 [ e (1F Vot
(Mot o e (ML
O 7, (sa)
* (1 vk, ]
— [/0< 0 tﬁ+a )dt]
f g )

A

/ ‘I’X,lau

(u)du

B
dx)

tBa+1

}
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By generalized Minkowski’s inequality, we get
[ z T
STV
0 { 0 0
_ i N q
=[] [ v R )
o |Jo B+

v(x,t,u)K, (1) ‘pdx> : du}

Again applying generalized Minkowski’s inequality, we get
1
[F( [ IvenaiRr,,),
o \Jo tBa+1
1
% 1% n”‘l/(vau)H?’ ‘

T

[ ([ ) Hw;;g det)l

I/

IN

IN

IN

(by the inequality (x+y)" <x"+y",0<r<1.)

(535 I' = I+, (say)

Applying Lemma 2(i), we get

Applying Lemma 4, we get

I = 01

(5.36) = 0( — _1)
n q

1
Tar )’
tﬁq-‘r]

Hll/xat’u ||P ”Hl//(x,t,u)
/ < o ———=dt du+/ /uitﬁq“

1
q g
det> du
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1
" |yt u)llp o\
. Ly D
5‘A|KMM(A e )" du

Applying Lemma 2(ii)

Applying Lemma 4, we get

T
L = 0(1){/ <u“—ﬁ+é—1>q‘du}
0
1_]

T 1-1
_ " () ‘_ 1
(5.37) = 0(1){/0 ud du} _O(naﬁ>

1
(5.38) o= 0( .)
n® P

1
, [ | JZ w(ot,u)Hy(u)dul|, \ T ]
J = / - : dt
T T p %dt 5
B /o (/o dx) tBa+1
Proceeding as above as in I’.
1
g ™yt u)llp N
J o< /;\}L(u)\([; W ar ) du
]
d H‘I’XJMHP
[[\Hn(u)\«/ /) S du
1
“Jy(xtu)llp Tyl w)lp o\
/|H < L du—i—/ |, (1 / oWt du

(by the inequality (x+y)" <x"+y",0<r<1.)

/ Y., 1) Hy () du

IN

(5.39) = Ji+J;, (say)
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Now,
Hl[/)C,t,MHp
I = /\H ( gt " du

Applying Lemma 2(iii), we get

Applying Lemma 4, we get
T 4 -2
Ji = O(Cln()) {/r <ua*ﬁ*2> q- dl/l}
= O(ay) {/ﬂuql( P2y } !
n l_l
n E q
= O(ano {Z/ L‘ “- ﬁ_z)du}

Let g(u) = (u*P=2)*" and G(u) is a primitive of g(u), then

T T
- of3)-o(if;
D)6 ()
7[ 7r (c) for some T o<
= (-——)slc c< —
kok+1)8 k+ 1 k
q
1 T

g\ 1-
norE 1 AT
(5.40) Ji = Olan) ( 2> }
1 " {I;/k kP

Now,
1
r |y (x,t,u)|[h )\
Jéz/ﬁ |Hn(u)|</u Wdt du

Applying Lemma 2(iv), we get
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Applying Lemma 4, we get

T 49
Jé = O(ano) {/{ <ua—B—2+$) g-1 du}

Proceeding as in J7, we have

gy 1-
n 1 1
(5.41) 5 = Oa < )
L = o >{z _— }

g N 1-1
1 e I
(5.42) J = 0(a, < 2)
« >{z _ }

(5.43)

From ((5.28)),((5.40)) and ((5.43)), for | <g <e,0 < <a <2,f € BY(L,),p > 1, we have

g y1-1
1 u 1 g1 !
O(an
wy7) 0l {Z == }

IFiCllg,, = -

(5.44)

This completes the proof of Case 1.

Case 2 (g = =)
Now, we consider the case g = oo.

1T ey = IT Ol 9T (5.45)



124 Madhusmita Mohanty, Gokulananda Das, and Sanghamitra Beuria

~ 7~;1 ot
wi(Tn, )l = supH(tﬁ)“’

t>0

= sup— /
>0 T {

Applying Minkowski’s inequality, we have

/l//x,t,u dLH—/ v (x,t,u)H,(u)du

%
dx) < dx)
Applying Generalized Minkowski’s inequality, we have

N B 2/ m - ’ T/ m ’
wiTo Mg = sup’{ / (/ w<x7t,u>v’|Kn<u>dx> dut [ ( i \w(x,t,u>|"|H<u>f’dx) du}
0 T |Jo \Jo = \Jo

B z - T
= sp{ [ v alRatwda [ o0

t>0

< 2 U R (sop YOG Y [ (s [V ) )

Using Lemma 3, we have

TN
dx}

/ v (x,t,u)H,(u)du

lTllpe < sup' ( [ vt s

t>0

IN

T Npe < O [ Kol Pdu+-0(1) [ 1y wlu® P
(5.46) = o[I'+J, (say)

Using Lemma 4 in / "and J', we have

"

5 1
_ a—p-1 _
(5.47) = 0(1)/0 u du= O<naﬁ)

(5.48) = O(aw) { Z kal_ﬁ}



Journal of Orissa Mathematical Society 125

From ((546)), (GA7)) and ((5:48)). we have

~ 1 n 1
Ty o = O (ﬁ) 00 Y ( ka_ﬁ) (5.49)

k=1

Now,

Tl < IRl [yl Gl

Applying Lemma 1(iii), we have

~ 2 [ ~ 1 [
Ol < 2 [ wefplRaGwldu+— [ w0, |0l du

n

_ 0(1)/0"ua|1?n(u)|du+0(1)fuam,,(u)uu

n

T

= 0(1)/gu°‘*1du+0(an0)/ u®?
0

n

n n

(5.50) = I +J, (say)

Using Lemma 4 in / " and J", we have

"

(5.51) =0 (10!)
n

n

(5.52) = O(aw) Y,
From ((5.50)), ((5.51))) and ((5.52))), we have

(5.53) IOl =0 <nla> + 0(ano)ki1 <1<1a>
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From ((5.49)) and ((5.53)), forg =0, 0 < f < @ <2, f € BJ(L,),p > 1, we have

~ 1
IO, = 0 (a5 ) +0taw) 1

This completes the proof of Case 2.

=

Combining the Case 1 and Case 2, we obtain the proof of the theorem.
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