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Abstract

This research first deals with a new comprehensive second order generalization to ex-
ponential type invexities, which encompasses most of the existing generalized sonvexity
concepts (including [25] and [41]) in the literature, and then a wide range of parametric
sufficient optimality conditions leading to the solvability for multiobjective fractional pro-
gramming problems are established. These results are new and application-oriented to other
fields of mathematical programming.

To the best of our knowledge, the obtained results seem to be most advanced on generalized

higher order invexities.
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1 Introduction

Recently, Zalmai [41] presented a generalization to the exponential type invexities, and applied to a
class of global parametric sufficient optimality criteria using various assumptions for semiinfinite dis-
crete minimax fractional programming problems. This is followed by Verma [30] who introduced the
second order (®,¥,p,n,0)—invexities to the context of parametric sufficient optimality conditions in
semiinfinite discrete minimax fractional programming, while Zalmai and Zhang [42] have established
a set of necessary efficiency conditions and a fairly large number of global nonparametric sufficient
efficiency results under various frameworks for generalized (1, p)—invexity for semi-infinite discrete
minimax fractional programming problems.

Verma [25] also constructed a general framework for a class of (p,n,0)—invex functions to examine
some parametric sufficient efficiency conditions for multiobjective fractional programming problems
for weakly e—efficient solutions. Motivated by the recent advances on first order B — (p, r)—invexities
and other generalizations to the context of multiobjective fractional programming problems, we first
introduce the second order B — (b,c,p,n,®,0, p,7,§)-invexities - a major generalization to Antczak
type first order B — (p, 7) —invexities - well-explored and well-cited in the literature, second we establish
some parametric sufficient optimality conditions for multiobjective fractional programming to achieve
optimal solutions to multiobjective fractional programming problems, and then we further establish some
generalized sufficiency results. The results established in this paper generalize the results on exponential
type first order B — (p, ) —invexities.

Next, we consider under the general framework of the second order B-(b, ¢, p, , @, 0, p, F, §)-

invexities of functions the following minimax fractional programming problem:

(P)
fi(x)

Minimize maxi<i<p

gi(x)
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subjecttox€ Q={xe X : Hj(x) <0,j € {1,2,---,m}},
where X is a nonempty open convex subset of R” (n-dimensional Euclidean space), f; and g; for i €
{1,---,p} and H; for j € {1,---,m} are real-valued functions defined on X such that fj(x) >0, g;(x) >0

forie {1,---,p} and for all x € Q. Here Q denotes the feasible set of (P).

Semiinfinite fractional programming problems serve a significant useful purpose, especially in terms
of applications to game theory, statistical analysis, engineering design (including design of control sys-
tems, design of earthquakes-resistant structures, digital filters, and electronic circuits), random graphs,
boundary value problems, wavelet analysis, environmental protection planning, decision and manage-
ment sciences, optimal control problems, continuum mechanics, robotics, and data envelopment analysis.

For more details, we refer the reader [1- 44].

2 Hybrid Sonvexities

Next, we first present the second order V — (b,c,p,n, ®, 0, p,7,§)-invexities - a generalization of the

second order B — (b,p,n, 0, p,7,§)-invexities, and then establish some results on optimal solutions to

(P).

Definition 2.1. The function f is said to be second order V — (b,c,p,n,®,0, p,7,§)-invex at x* € X
if there exist functions N,® : X x X — R", functions b: X x X — [0,00), ¢ : X x X — (0,00), and real

numbers ¥, p,§ such that for all x € X and z € R",

b(x,x) (% (U160 1))

> c(x,x*) (113<Vf(x*),eﬁn<x’x*) — ]>
+ Z%N(a)(x,x*),vzf(x*)@)

+ p(ra)|8(x, x| for 0,7 £ 0 and 540,



4 Ram N. Mohapatra and Ram U. Verma

v

56 (V) ()
3 0ox), V()

+ p(x,x))0(x,x")|* for p=0,5=0and 7 #0,

b&mﬂﬁﬂw—f@m)
((Vf ),eP1x) 1)
1

= So(xxt) 2
+ 2§<e 1,V2f(x* z>>

v

p(ex) |0 (eI for p# 0,540 and 7 =0,

blx) (1£00) = F(6)]) = era) (V) m (3,4))
b0, V()

+ p(x,x")||0(x,x")||> for p=0,5=0and 7= 0.

Definition 2.2. The function f is said to be second order B— (b,c,p,n,®,0,p, T, 5) -pseudoinvex with
respect to M, b and c at x* € X if there exist functions 1,0 : X X X — R”, functions b : X x X — [0,00),

c: X xX — (0,00), and real numbers 7 and p such that for all x € X and 7 € R",

((Vf 1) 1)
¥ gyawm>—hv%u)@)+Mmf»wuwszo

= b(x,x%) (%(ef[ﬂx)—f@*)] - 1)) >0for p#0,5#0and 7 #0,
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() (V1) 100°)) + 5 (), VA (60)2) ) () [0(6.x") > 0

= b(x,x") (%(ef[f(x)*f(x*)] - 1)) >0 forp=0,§=0and 7 #0,

el (5 (V761,00 < 1) 2 (00 - 1,92 £(6)z)

+ pxx")8(x,x)|* >0

= b(x,x*)([f(x)—f(x*)]) >0 forp#0,5#0and 7F =0,

() ((TF0),10x°)) + 5 (000), V21 (7)) ) () [0(6.x°) > 0

= b(x,x*)([f(x)—f(x*)]) >0 for p=0,5=0and 7 = 0.

Definition 2.3. The function f is said to be second order B — (b,c,p,n,®,0,p,F,3)-quasiinvex with
respectto 1, @, b and c at x* € X if there exist functions 1, @ : X x X — R", functions b : X x X — [0,0),

¢:X XX — (0,00), and real numbers 7 and p such that for all x € X and z € R",
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= c(x,x") <;<Vf(X*), M) _ 1)

1 So(xx*) 2 *
+ gl LV2/(x)2))

+  p(x,x)|8(x,x")||> < 0for p#0,5#0and F #0,

b(x,x") (% (S _ 1)) <0

= c(x,x") <<Vf(x*), n(x,x*)>
b5 0er), V)0

+ P00 x") <0

forp=0,5=0and 7 +#0,
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blx,x) (1 (0) = F(x)]) <0

= c(xx") (115<Vf(X*)7€ﬁn(x’x*) - 1>)

| -
g S LVERG)) 4 p ()| < 0

for p#£0,5§#0and 7 =0,

bl ([F(6) = £x)]) <0
* * * 1 * 2 *
= c(xx )<<Vf(x ), 1 (x,x )>+§<a)(x,x ), Vof(x )Z))

+ plrx) 60> <0

forp=0,§=0and 7 =0.

Definition 2.4. The function f is said to be second order strictly B— (b,c,p,n,®, 0, p,7,5)-pseudoinvex
with respect to 1, @ and b at x* € X if there exist functions N,® : X x X — R", functions b: X x X —

[0,00), ¢ : X X X — (0,00), and real numbers F and p such that for all x € X and z € R",
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(o) (V7)) 1)

1) oo .
+27§‘<esa)(x,x ) I,sz(x )Z>>

+ p(xa”)[8(x,x)? =0

1

= b(x,x") (;(ef[f(x)*f(x*)] - 1)) >0

for p#£0,5#0and 7+ 0,

() (V). 100, )) + 3(0(0.0°), T2 67)2) ) +p (6"} [0, 2°)]2 > 0

- b(x,x*)(%(eﬂf(")_f(x*)] —1)) >0 for p=0,5=0and 7 #0,

) -
(<Vf ), M) — 1) o () 1LV f (x")2)
+ p(x") 60" >0

= b(x,x*)<[f(x)—f(x*)]) >0 for p#£0,540and 7 =0,
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clx®) (V) m0)) + 5 (@0 ), T (0)2)) + p ) )P 2 0

- b&wﬂaﬂ@—fﬁm)>0ﬂwﬁ:Q§:Omm720

Definition 2.5. The function f is said to be second order strictly B— (b,c,p,n,®,0, p,7,§)-quasiinvex
with respect to 1, @ and b and c at x* € X if there exist functions 1,0 : X X X — R", functions

b:X xX —[0,00), b: X xX — [0,00), and real numbers ¥ and p such that for all x € X and z € R",

MLfK;@W@ﬁWﬂ_U)SO

= cloa) (5(TF0). e 1)

| R
£ O LV A()2)) 4 p ()]0 (x| <0

for p#£0,5#0and 7 #0,
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+ p(x,x")||0(x,x")||> <0 for p=0,5§=0and 7 # 0,

b (1700 = £(x)]) 0

= c(x,x") <;<Vf(x*),eﬁn(x’x*) — 1>

1

() — 1L V2F()2) ) +p (x,x)]|0 ()P < 0

forp#£0,5#40and 7 =0,
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bex) ([£0) = F(7)]) <0
= (o) ((TF0) M) + 3 {0(06x7), T4 (7)) )
£ )00 P <0
for p=0,5=0and 7 =0.

Definition 2.6. The function f is said to be second order prestrictly B— (b,c,p,n, ®, 0, p, 7, §)-pseudoinvex
with respect to 1, @ and b at x* € X if there exist functions N,® : X x X — R", functions b: X x X —

[0,00), ¢ : X X X — (0,00), and real numbers F and p such that for all x € X and z € R",
(] w\ PN (x,x*)
o) (5(VF), M) 1)

i So(xx*) 2 *
) 1L VR A7)

+ p(xa")8 (x>0

for p#£0,5#0and 7+ 0,
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= b(x,x") (%(eﬂf(")_f(x*)] — 1)) >0 forp=0,5=0and 7 #0,

1 (es"a)()gx*) . 1,V2f(x*)z>

1 - .
c(x,x") <E<Vf(x*),epn(x’x ) 1> + %

+ pxa”)]|8(x,x)|* >0

é-b@mﬂQﬂM—f@m)ZOﬁWﬁ#Qf#OmMi:Q

e, ) (V10 M)+ 340(0x"), V27 (0)2)) 621006 P> 0

= b&wﬂaﬂ@—f@m)20ﬂwﬁz&§z0mﬂfz&

Next, we recall the following result (Verma [28]) that is crucial to developing the results for the next

section based on second order B — (b,c,p,n, 0, p, 7, §)-invexities.

Theorem 2.1. Let x* € F and A* = max <<, f;(x*)/gi(x"), for each i € p, let f; and g; be twice continu-
ously differentiable at x*, for each j € g, let the function z — G (z,t) be twice continuously differentiable
at x* for all t € Tj, and for each k € r, let the function z — Hy(z,s) be twice continuously differentiable

at x* for all s € Sy. If x* is an optimal solution of (P), if the second order generalized Abadie constraint
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qualification holds at x*, and if for any critical direction y, the set cone

(VG500 0, V3G (x" 1)) ) 11 € T, j € g}
+ span{ (VHk(x*,s), {y, Vsz(x*,s)y>> 15 € Sk,ker},

where Tj(x*) = {t € T; : G;(x*,t) =0},

is closed, then there existu* €¢ U ={u € R :u >0, Zf’zl u; = 1} and integers Vo and v*, with 0 < vy <
v* <n+1, such that there exist vy indices j,,, with 1 < j,, < g, together with v points t™ € f"jm (x*), me
‘ﬁ’ v* — v, indices ky, with 1 < k,, < r, together with v* — v points s™ € Sy, for m € L*\Lg, and v*

real numbers v,,, with v, > 0 for m € vjj, with the property that

p Vo
Y V() = A (Vaix)] + Y vnVG, (x*,1™)
i=1 m=1

v

+ Y v VH(x*,§") =0, 2.1
m=vy+1
< 2 2 i 2
0y | L IVEA() = A Vi) + Y v VPG, (™)
i=1 m=1
V*
+ Y v,’;vsz(x*,sm)]y>zo, 2.2)
m=v;+1

where T;, (x*) ={t € T}, : G, (x*,t) =0}, U={u e R? :u>0,Y"  u; =1}, and V*\Vy is the com-

plement of the set vj relative to the set V*.
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3 Second Order Sufficient Optimality Conditions

Now, we first present our main result on sufficient optimality conditions and the second order B —
(b,c,p,m,®,0,p,F,3)-invexities to the context of optimality solutions to (P).

Let E;(x;x*,u*) Vi€ {1,---,p} be defined by F_, u[fi(x) — (L) 0, (x)], and Bj(x,v*) Vje{l,---,m}

8i(x*)

be defined by X7 viH;(x).

Theorem 3.1. Let x* € Q. Let f;,gi fori€ {1,---,p} with ¢(x*) = 22863 >0, gi(x*) > 0 and H; for

Jj € {1,---,m} be twice continuously differentiable at x* € Q, and let there exist u* € U = {u € RP : u >

0% ,u; = 1} and v* € R" such that

filx"
gi(x*)

~—

X7 ui [V fi(x) = ( )V &)+ vy v Hj(xT) =0 3.1)

P (x* m
<z, [; i [V2 fi(x*) = ( ; Exi )V28i(x")] +j_zlv;v2Hj(x*)} z> >0, (3.2)
and
ViHj(x*) =0, j€{l,---,m}. (3.3)

Suppose, in addition, that any one of the following assumptions holds:

(i) Ei(.;x",u*) Yie{l,---,p} are second order B— (b,c,p,n,®,0,p, 7, 5)-pseudoinvex with respect
to M, @, b and ¢ at x* € X if there exist functions 11,® : X x X — R", functions b : X x X — [0, 00),
c: X xX — (0,0), and real numbers ¥ and p such that for all x € X and z € R", and Bj(.,v*)

Vje{l,---,m} are second order B— (b,c,p,n,®,0,p,F,5)-quasiinvex with respect to 1, b and ¢



(ii)

(iii)

(iv)

Journal of Orissa Mathematical Society 15

at x* € X ifthere exist functions N, 0 : X x X — R", functions b: X XX — [0,0), ¢: X x X — (0,00),

and real numbers 7 and p such that for all x € X, z € R", p(x,x*) > 0, and b(x,x*) > 0.

Ei(.;x*,u*) Vie{l,---,p} are second order B— (b,c,p1,M, 0,0, p,7,5)-pseudoinvex with respect
ton, @, band c at x* € X if there exist a function N : X x X — R", functions b : X x X — [0,0),
c:X xX — (0,%), and real numbers ¥ and p such that for all x € X and z € R", and Bj(.,v*)
Vje{l,---,m} are second order B— (b,c,p2,n,®,0,p,F,3)-quasiinvex with respect to 1, b and ¢
at x* € X ifthere exist functions n, @ : X x X — R", functions b: X xX — [0,00), c: X x X — (0,00),
and real numbers 7 and p such that for all x € X, z € R", b(x,x*) > 0 and p;(x,x*),p2(x,x*) >0

with pp(x,x*) > p1(x,x*).

Ei(.;x*,u*) Yie{l,---,p} are second order prestrictly B— (b,c,p1,M, 0,0, p,F,5)-pseudoinvex
with respect to 1, b and c at x* € X if there exist functions 1, ® : X x X — R", functions b: X x X —
[0,00), c: X XX — (0,00), and real numbers 7 and p such that for all x € X and z € R", and B (. ,v*)
Vje{l,---,m} are second order strictly B— (b,c,p2,n,®,0, p,F,§)-quasiinvex with respect to
N, b and ¢ at x* € X if there exist functions 1,0 : X X X — R", functions b : X x X — [0,0),

c: X xX — (0,00), and real numbers 7 and p such that for all x € X, z € R", b(x,x*) > 0, and

pl(x’X*)7p2(x7X*) = 0 with pZ(XaX*) 2 pl(x7X*)'

E(.;x*,u*) Vie{l,---,p} are second order prestrictly B— (b,c,p1,n,®,0,p,F,3)-quasi-invex
with respect to 1, @ b and ¢ at x* € X [ if there exist functions 1,0 : X x X — R", functions
b:X xX —1[0,00), c: X xX — (0,00), and real numbers ¥ and p such that for all x € X and 7 € R",
and Bj(.,v*) Vje {l,---,m} are second order strictly B— (b,c,p2,m,®,0, p,7,5)-pseudoinvex

with respect to M, ®©, b and c at x* € X if there exist functions 1,0 : X x X — R", functions
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b:XxX —10,0), c:X xX — (0,0), and real numbers 7 and p such that for all x € X, z € R”,

b(x,x*) >0, and p1 (x,x*), p2(x,x*) > 0 with pa(x,x*) > p1 (x,x%).

(v) Foreachic {1,---,p}, fiis second order B— (b,c,p1,M,®,0,p,F,§)—invex and —g; is second or-

der B—(b,c,p2,n,®,0,p,7,5)—invexatx*. H;(.,v*) Vje{1,---,m} isB—(b,c,p3,M,,0,p,7,§)—quasi-

invex at x*, and £7_vips +p* > 0 for p* = 20 uf(p1+ @ (x*)p2) and for ¢(x*) = gg; with

b(x,x*) > 0.

Then x* is an optimal solution to (P).

Proof. If (i) holds, and if x € Q, then it follows from (3.1) and (3.2) that

1 fi(x®) - .
= EP_ I/l;k i _x* —_ i x* 761’71()57)6 ) —1
ﬁ< vl [ fi(x") (gi(x*))Vg( )] )
1 o
+ E(Z;-"Zlv}‘-ij(x*),em(x’x)—1>:0Vx6 0, (3.4)

1
25

(00 1 [ Y92 060) — (A0 w2 ()] 4 Y i) ) 20, 6)
i=1 =1

gi(x*) ;
Since v* > 0, x € Q and (3.3) holds, we have

Y WiH(x) <0 =X viH(x"),

and so

s (S 1) <o
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since 7 # 0 and b(x,x*) > 0 for all x € Q. In light of the B— (b,c,p,n,®,0, p,7,§)-quasiinvexity of

B;(.,v*) at x*, and ¢(x,x*) > 0, it follows that
1 «
c(x,x*)<E<VHj( “),eP) 1>+ () 1, V2, (x)2) ) +p (xx")]| 0 ()| < 0,

and hence,

1

s (v ) L

o= (PO 1B V2 (37)z))
+ p(x)[[0(xx%)|* <0. (3.6)

It follows from (3.4), (3.5) and (3.6) that

) (L [ )~ (LD 9 e ) 1)
1 So(xx* 4 * * ﬁ(x*) *
+ ﬂ<e ( )—l,gui[vzﬁ(x )Z_(gi(x*))VZgi(x )Z]>)
> pea)6(ex)| 37)

Since p(x,x*) > 0, applying B— (b,c,p,n, o, 0, p,§,7)—pseudo-invexity at x* to (3.7), we have

%b(x,x*) (eF[E"(x’x*’”*) —E( )] 1)>0. (3.8

Since b(x,x*) > 0, (3.8) implies

i)~ (Lo
> Sl - ()
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Thus, we have

f'(x*>) i(x)] > 0. (3.9)

1 14 l[ﬁ() (gi(X*)

,p}, we conclude that there exists an x € Q such that

Since u} > 0 foreachi € {1,---

* 1 1 lﬁ(x) ijl iﬁ(x)
A< 1n<11a<)§72 L urgi(x) Sr»fleaU Z ,gi(x).

Hence, x* is an optimal solution to (P).

The proof for (ii) is similar to that of (i), but we include for the sake of the completeness. If (ii) holds

and if x € Q, then it follows from (3.1) and (3.2) that

l fl(“x*) s pn (xx*)
ﬁ< i [V fi(x") — (gi(x*))v i(x)],e” 1)
+ ;,<2';’_1vjij(x*),eﬁ”<X>X*>—1>—OVxe 0, (3.10)

T N S
w) ¥ S0 2 ViVH()|2) 20, 31D

e 1 [ w9~

p i=1

Since v* > 0, x € Q and (3.3) holds, we have

Y viH(x) <0 =X \viH;(x"),

and so

st () <

since 7 # 0 and b(x,x*) > 0 for all x € Q. In light of the B— (b, ¢, p2,M, 0, p, 7, §)-quasiinvexity of B;(.,v")

at x*, it follows that

_ . 1, . x
*)7epn(x,x ) 1> + 7<exw(x,x ) 1,V2Hj(x*)z)) +p2(x,x*)\|9(x,x*)||2 <0,

cloa) (5 (VHx -
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and hence,

c(x,x*) (lzs_n:1<VHj(x*),eﬁn(x,x*) _ 1> + 1

F 27§<e§a)(x7x*) _ l’zgn:lv2Hj(x*)z>)

+ p2(x,x%)[|0(x,x") ||* < 0. (3.12)

It follows from (3.10), (3.11) and (3.12) that

clor’) (S v ~ (LD 9 o) e -y

gi(x*)
1 S (x,x* < * * fl(X*) *
e L RV (Ve )d))
> para) [0, (3.13)

Since p; (x,x*), p2(x,x*) > 0 with pp (x,x*) > p; (x,x*), and ¢(x,x*) > 0, applying B— (b, c,p1,1M, 0, p,F,5)—pseudo-

invexity at x* to (3.13), we have

b(x,x") (% (eF[E"(x’x*’”*)*E"("*”*’”*” - 1)) > 0. (3.14)
Since b(x,x*) > 0, (3.13) implies
22 i) - (LD
> Sl - ()
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Thus, we have

), ) > 0. (3.15)

Pl fi(x) —
Zi:l l[f( ) (gz(x*)

Since u? > 0 foreachi € {1,---, p}, we conclude that there is an x € Q such that

Lywifil) o FE fi()

1

T 1<i<p Zf:l u;‘gi(x) T ueU Zf:l ul-gi(x)

Hence, x* is an optimal solution to (P).

Next, we start off the proof for (iii) as follows: if (iii) holds, and if x € Q, then it follows from (3.1)

and (3.2) that

fitx),
gi(x*)
(X7 v 7 Hj(x"),eP) — 1) = 0Vx € Q,

( *)]’eﬁn(X-,X*) —1)

i

(L [V fi(x) = (
(3.16)

4
Sl o= | =

M) 2 ()4 Y v, )Y 0. 3
=1

1 poo(x,x*) C * V72 *
() =1, R uilV A6 -
! J

p i=1
Since v* > 0, x € Q and (3.3) holds, we have

TiLviH (x) < 0= XL viH;(x"),

which implies
P (% (10 1)) <o,



Journal of Orissa Mathematical Society 21

Then, in light of the strict B— (b,c,p,n, ®, 0, p,7,5)—quasi-invexity of B;(.,v*) at x*, we have

1 - « 1 -
cleox) (S(VH (). 7050 1) 4 2= 1LV H(60)2)) +plea) () < 0. Bu18)

S

It follows from (3.3), (3.16), (3.17) and (3.18) that

;(@fj_lu?[Vﬁ(X*) - (gg;; )7 gi(x*)], P — 1)
+ 21S< S (o, x* _1 Z V2fz ((];Ef;;)VZgl(x*)Z]>>
A a19)

*

As a result, since p(x,x*) > 0, applying the prestrict B— (b,c,p,n,®, 0, p,7,§)—pseudo-invexity at x

to (3.19), we have

() ),
(B0 00— (i) = 2w ) = (3 x)]) >0,
which implies
22 i) - (LD
> Sl - ()
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Thus, we have

filx")
2wl fi(x) — i > 0.
i1t [fi(x) (g,-(x*)) i(x)] =
Since u? > 0 foreachi € {1,---, p}, we conclude that there is an x € Q such that

Lywifil) o FE fi()

1

T 1<i<p Zf:l u;‘gi(x) T ueU Zf:l ul-gi(x)

Hence, x* is an efficient solution to (P).

(3.20)

The proof applying (iv) is similar to that of (iii), but still we include it as follows: if x € Q, then it

follows from (3.1) and (3.2) that

fitx),
gi(x*)
(X7 v 7 Hj(x"),eP) — 1) = 0Vx € Q,

( *)]’eﬁn(X-,X*) —1)

i

(i [V fix) = (

4
Sl o= | =

5 8i(x*) =1

Since v* > 0, x € Q and (3.3) holds, we have

TPl viH (x) < 0= XL ViH;(x"),

which implies
P (% (10 1)) <o,

1<es~w(x,x*) 1 {éu,’-‘w%(x*) _ (M)VZg,-(x*)] + iv;VZHj(X*)}Z> > 0.

(3.21)

3.22)
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Then, in light of the equivalent form for the strict B— (p,n,®, 0, p, 7,§) —pseudo-invexity of B;(.,v*)

at x*, we have

1 ~ * * * *
(€)1 V2, (x )z>) +p (x,x7)[|6 (x,x")[|* < 0.

1 - .
c(x,x") <E<VHj(x*),epn(x’x ) 1> + %

It follows from (3.21) and (3.22) that

(L wilwe) — (L) g e -

| =

(o) 1 R V2 = (Vi)

1

=

25

> pra) 6P

(3.23)

As aresult, since p(x,x*) > 0, applying the equivalent form for the prestrict (b,p,n, ®, 0, p, 7, §)—quasi-

invexity of E;(.;x*,u*) at x* to (3.47), we have

(o) = ()

which implies

Thus, we have

22 i) - (L Dgi] 20

(3.24)
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Since u} > 0 foreachi € {1,---, p}, we conclude that there exists an x € Q such that

uj fi(x)
A" < max ’171 < -
1<i<p Z —1Y; g,(X) uel Z,l';l uigi('x)

Hence, x* is an optimal solution to (P).

Finally, to prove (v), we start with: since x € Q, it follows that H;(x) < H;(x*), i.e., Hj(x) —H;(x*) <0,

which implies

s (L 1) <o

Then applying the B— (b,c,p3,n,®, 0, p,7,5)—quasi-invexity of H; at x* and v* € R, we have

* 1 m * * = xx*
c(x,x )(E@j:l"ijj(x ),ePnex) 1)

+ 2—s~<e LX) S vV ()2 )

IN

—Zvips |6 ()|

Since u* > 0 and f’E % > 0, it follows from B — (b, ¢, p3,n, ®, 0, p,7,§)—invexity assumptions that



where ¢ (x*) =

v

Y

Y

filx")
gi(x*)
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b(x,x*)<%er2f11[f,()( )8i()] 1)

_/,-(X*) X —oi(x*
b(x,x*)(l P u {[fi(x)—fi )]_(gi(x*))[g’(x) &)} 1)

7

1

c(x,x*)[:<§<ef‘*’<"7">—1 P WV fi(x*)r — (2=

7 ui o1+ ¢ (x*)p2] 6 (x.x) |2

—c(x,x") [(Zm lv* ij(x*),eﬁn(x’x*) —1)

| o=

L)
i [p1 + 9 (x")pa |6 (x, ) |
(T vips + Xy [+ @ (x)pa] )10 (x,x")

(Zrvips +p") 16 (x, )] > 0,

and p* =X ui(p1+ ¢ (x")p2).
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Note that when functions f;, g;, H; have first-order derivatives, the established results seem to be spe-

cialized to B— (p, r)—invexities frameworks introduced by Antczak [1-3] and later investigated by others.

Theorem 3.2. Let x* € Q. Let f;,g;i fori € {1,---,p} with ¢(x*) = g‘gi% >0, gi(x*) > 0 and H; for

j € {1,---,m} be differentiable at x* € Q, and let there exist u* € U = {u € R" : u > 0,X"_u; =1} and

v* € RY such that

filtx”

gi(x*

~—

I [V i) = ( )V &)+ vy v Hj(x") =0 (3.25)

~—

and

ViH;(x*) =0, j € {1,-,m}. (3.26)

Suppose, in addition, that any one of the following assumptions holds:

(i) Ei(.;x*,u*) Yie{l,---,p} areB—(b,p,n,0, p,F)-pseudoinvex with respect to 1, and b at x* € X
if there exist a function 1 : X x X — R", a function b : X x X — (0,0), and real numbers 7 and
p such that for all x € X and z € R", and B;(.,v*) Vje{l,---,m} are B— (b,p,n,0,p,F)-
quasiinvex with respect to 1M, and b at x* € X if there exist a function 11 : X x X — R", a function

b:X xX — (0,00), and real numbers 7 and p such that for all x € X, z € R", and p(x,x*) > 0

(ii) E;(.;x*,u*) Yie{l,---,p} areB—(b,n,p1,0, p,F)-pseudoinvex with respect to 1 and b at x* € X
if there exist a function 1 : X x X — R", a function b : X x X — (0,0), and real numbers 7 and

p such that for all x € X and z € R", and B;(.,v*) Vje {1,---,m} are B—(b,p»,1n,0,p,F)-
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quasiinvex with respect to 1, and b and at x* € X if there exist a function 11 : X x X — R”,

a function b : X x X — (0,0), and real numbers 7 and p such that for all x € X, z € R", and

P1 (an*)ap2(x7X*) > 0 with Pz(an*) > P1 (x7X*)'

(iii) Ei(.;x*,u*) Vie {l,---,p} arestrictly B— (b,p,n,0,p,7)—pseudo-invex at x*, and Bj(.,v")

Vje{l,---,m} areprestrictly B— (b,p,n,0)—quasi-invex at x*.

(iv) Ei(.;x*,u*) Yie{l,---,p} are strictly B— (b,p,n,0,p,7)—pseudo-invex at x*, and Bj(.,v")

Vje{l,---,m} are prestrictly B— (b,p,n,0,p,7)—quasi-invex at x* with p(x,x*) > 0.

(v) For each i€ {1,---,p}, fi is B—(b,p1,Mm,0,p,7)—invex and —g; is B— (b,py,Mn,0)—invex at

X" Hi(.,v) Vj€{l,---m} isB—(ps3,n)—quasi-invex at x*, and £7_vip3+p* > 0 for p* =

S (p1+ ¢ (x*)pa) and for ¢ (x*) = L.

Then x* is an optimal solution to (P).

4 Concluding Remarks

We observe that the obtained results in this communication can be generalized to the case of multiobjec-
tive fractional subset programming with generalized invex functions, for instance based on the work of
Mishra et al. [16] and Verma [29] to the case of the €— optimality and weak €—optimality conditions to

the context of minimax fractional programming problems.
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