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On Exponentially Convex Functions

Muhammad Aslam Noor∗ and Khalida Inayat Noor†

Abstract

In this paper, we define and introduce some new concepts of the exponentially convex

functions. We investigate several properties of the exponentially convex functions and dis-

cuss their relations with convex functions. Optimality conditions are characterized by a

class of variational inequalities. Several interesting results characterizing the exponentially

convex functions are obtained. Results obtained in this paper can be viewed as significant

improvement of previously known results

1 Introduction

Convex functions and convex sets have played an important and fundamental part in the development

of various fields of pure and applied sciences. Convexity theory describes a broad spectrum of very

interesting developments involving a link among various fields of mathematics, physics, economics and

engineering sciences. Some of these developments have made mutually enriching contacts with other

fields. Ideas explaining these concepts led to the developments of new and powerful techniques to solve

a wide class of linear and nonlinear problems. The development of convexity theory can be viewed as the

simultaneous pursuit of two different lines of research. On the one hand, it reveals the fundamental facts

∗Mathematics Department, COMSATS University Islamabad, Islamabad, Pakistan, Email: noormaslam@gmail.com
†Mathematics Department, COMSATS University Islamabad, Islamabad, Pakistan, Email: khalidan@gmail.com



34 M. A. Noor and K. I. Noor

on the qualitative behaviour of solutions (regarding its existence, uniqueness and regularity) to important

classes of problems; on the other hand, it also enables us to develop highly efficient and powerful new

numerical methods to solve nonlinear problems, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

In recent years, various extensions and generalizations of convex functions and convex sets have been

considered and studied using innovative ideas and techniques. It is known that more accurate and in-

equalities can be obtained using the logarithmically convex functions than the convex functions. Closely

related to the log-convex functions, we have the concept of exponentially convex(concave) functions, the

origin of exponentially convex functions can be traced back to Bernstein [6]. Avriel [4] introduced and

studied the concept of r-convex functions. For further properties of the r-convex functions, see Zhao

et al[24] and the references therein. which have important applications in information theory, big data

analysis, machine learning and statistic. See, for example, [2, 3, 18, 19, 21, 22, 23, 24] and the references

therein.

Motivated and inspired by the ongoing research in this interesting, applicable and dynamic field, we

again consider the concept of exponentially convex functions. We discuss the basic properties of the ex-

ponentially convex functions. It is has been shown that the exponentially convex(concave) have nice nice

properties which convex functions enjoy. Several new concepts have been introduced and investigated.

We show that the local minimum of the exponentially convex functions is the global minimum. The

optimal conditions of the differentiable exponentially convex functions can be characterized by a class of

variational inequalities, which is itself an interesting outcome of our main results. The difference (sum)

of the exponentially convex function and exponentially affine convex function is again a exponentially

convex function. The ideas and techniques of this paper may be starting point for further research in

these areas.
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2 Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H. We denote by 〈·, ·〉 and ‖ · ‖ be the inner

product and norm, respectively. Let F : K→ R be a continuous function.

Definition 2.1. [7].The set K in H is said to be convex set, if

u+ t(v−u) ∈ K, ∀u,v ∈ K, t ∈ [0,1].

Definition 2.2. A function F is said to be convex, if

F((1− t)u+ tv)≤ (1− t)F(u)+ tF(v), ∀u,v ∈ K, t ∈ [0,1]. (2.1)

We now consider the concept of the exponentially convex function, which is mainly due to Noor and

Noor [14, 15] and Rashid et al[21, 22] as:

Definition 2.3. [3] A function F is said to be exponentially convex function, if

eF((1−t)u+tv) ≤ (1− t)eF(u)+ teF(v), ∀u,v ∈ K, t ∈ [0,1].

We remark that Definition 2.5 can be rewritten in the following equivalent way, which is due to

Antczak [3].

Definition 2.4. A function F is said to be exponentially convex function, if

F((1− t)a+ tb)≤ log[(1− t)eF(a)+ teF(b)], ∀a,b ∈ K, t ∈ [0,1]. (2.2)

A function is called the exponentially concave function f , if − f is exponentially convex function.

It is obvious that two concepts are equivalent. This equivalent have been used to discuss various aspects

of the exponentially convex functions. It is worth mentioning that one can also deduce the concept of

exponentially convex functions from r-convex functions, which were considered by Avriel [4] and Bern-

stein [6].
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For the applications of the exponentially convex functions in the mathematical programming and in-

formation theory, see Antczak [3],Alirezaei and Mathar[2] and Pal et al[23].. For the applications of

the exponentially concave function in the communication and information theory, we have the following

example.

Example [2]: The error function

er f (x) =
2√
π

∫ x

0
e−t2

dt,

becomes an exponentially concave function in the form er f (
√

x), x≥ 0, which describes the bit/symbol

erorr probability of communication systems depending on the square root of the underlying signal-to-

noise ratio. This shows that the exponentially concave functions can play important part in communica-

tion theory and information theory.

Definition 2.5. [3] A function F is said to be exponentially affine convex function, if

eF((1−t)u+tv) = (1− t)eF(u)+ teF(v), ∀u,v ∈ K, t ∈ [0,1].

Definition 2.6. The function F on the convex set K is said to be exponentially quasi convex, if

eF(u+t(v−u)) ≤max{eF(u),eF(v)}, ∀u,v ∈ K, t ∈ [0,1].

From the above definitions, we have

eF(u+t(v−u)) ≤ (1− t)eF(u)+ teF(v))

≤ max{eF(u),eF(v)}.

This shows that every exponentially convex function is a exponentially quasi-convex function. However,

the converse is not true.
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Let K = I = [a,b] be the interval. We now define the exponentially convex functions on I.

Definition 2.7. Let I = [a,b]. Then F is exponentially convex function, if and only if,∣∣∣∣∣∣∣
1 1 1
a x b

eF(a) eF(x) eF(b)

∣∣∣∣∣∣∣≥ 0; a≤ x≤ b.

One can easily show that the following are equivalent:

1. F is exponentially convex function.

2. eF(x) ≤ eF(a)+ eF(b)−eF(a)

b−a (x−a).

3. eF(x)−eF(a)

x−a ≤ eF(b)−eF(a)

b−a .

4. (b− x)eF(a)+(a−b)eF(x)+(x−a)eF(b))≥ 0.

5.
F(a)

(b−a)(a−x) +
eF(x)

(x−b)(a−x) +
eF(b

(b−a)(x−b) ≤ 0,

where x = (1− t)a+ tb ∈ [0,1].

3 Main Results

In this section, we consider some basic properties of generalized strongly convex functions.

Theorem 3.1. Let F be a strictly exponentially convex function. Then any local minimum of F is a global

minimum.

Proof. Let the exponentially convex function F have a local minimum at u ∈ K. Assume the contrary,

that is, F(v)< F(u) for some v ∈ K. Since F is exponentially convex, so

eF(u+t(v−u)) < teF(v)+(1− t)eF(u), for 0 < t < 1.
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Thus

eF(u+t(v−u))− eF(u) < t[eF(v)− eF(u)]< 0,

from which it follows that

eF(u+t(v−u)) < eF(u),

for arbitrary small t > 0, contradicting the local minimum.

Theorem 3.2. If the function F on the convex set K is exponentially convex, then the level set Lα = {u ∈

K : eF(u) ≤ α, α ∈ R} is a convex set.

Proof. Let u,v ∈ Lα . Then eF(u) ≤ α and eF(v) ≤ α. Now, ∀t ∈ (0,1), w = v+ t(u−v) ∈ K, since K is

a convex set. Thus, by the exponentially convexity of F, we have

Fe(v+t(u−v)) ≤ (1− t)eF(v)+ teF(u)

≤ (1− t)α + tα = α,

from which it follows that v+ t(u− v) ∈ Lα Hence Lα is convex set.

Theorem 3.3. The function F is exponentially convex, if and only if

epi(F) = {(u,α) : u ∈ K : eF(u) ≤ α,α ∈ R}

is a convex set.

Proof. Assume thatF is exponentially convex. Let (u,α), (v,β ) ∈ epi(F). Then it follows that eF(u) ≤

α and eF(v) ≤ β . Thus, ∀t ∈ [0,1], u,v ∈ K, we have

eF(u+t(v−u)) ≤ (1− t)eF(u)+ teF(v)

≤ (1− t)α + tβ ,

which implies that

(u+ t(v−u),(1− t)α + tβ ) ∈ epi(F).
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Thus epi(F) is a convex set. Conversely, let epi(F) be a convex set. Let u,v∈K. Then (u,eF(u))∈ epi(F)

and (v,eF(v)) ∈ epi(F). Since epi(F) is a convex set, we must have

(u+ t(v−u),(1− t)eF(u)+ teF(v)) ∈ epi(F),

which implies that

eF(u+t(v−u)) ≤ (1− t)eF(u)+ teF(u).

This shows that F is exponentially convex function.

Theorem 3.4. The function F is exponentially quasi convex, if and only if, the level set Lα = {u∈K,α ∈

R : eF(u) ≤ α} is a convex set.

Proof. Let u,v ∈ Lα . Then u,v ∈ K and max(eF(u),eF(v))≤ α. Now for t ∈ (0,1),w = u+ t(v−u) ∈ K,

We have to prove that u+ t(v−u) ∈ Lα . By the exponentially quasi convexity of F, we have

eF(u+t(v−u)) ≤max(eF(u),eF(v))≤ α,

which implies that u+ t(v−u) ∈ Lα , showing that the level set Lα is indeed a convex set.

Conversely, assume that Lα is a convex set. Then for any u,v ∈ Lα , t ∈ [0,1], u+ t(v− u) ∈ Lα . Let

u,v ∈ Lα for

α = max(eF(u),eF(v)) and eF(v) ≤ eF(u).

Then from the definition of the level set Lα , it follows that

eF(u+t (v,u)) ≤max(eF(u),eF(v))≤ α.

Thus F is an exponentially quasi convex function. This completes the proof.

Theorem 3.5. Let F be an exponentially convex function.. Let µ = infu∈K F(u). Then the set E = {u ∈

K : eF(u) = µ} is a convex set of K. If F is strictly exponentially , then E is a singleton.
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Proof. Let u,v ∈ E. For 0 < t < 1, let w = u+ t(v−u). Since F is a exponentially convex function, then

F(w) = eF(u+t(v−u)) ≤ (1− t)eF(u)+ teF(v)

= tµ +(1− t)µ = µ,

which implies that to w ∈ E. and hence E is a convex set. For the second part, assume to the contrary

that F(u) = F(v) = µ. Since K is a convex set, then for 0 < t < 1,u+ t(v−u) ∈ K. Further, since F is

strictly exponentially convex,

eF(u+t(v−u)) < (1− t)eF(u)+ teF(v)

= (1− t)µ + tµ = µ.

This contradicts the fact that µ = infu∈K F(u) and hence the result follows.

Theorem 3.6. If F is an exponentially convex function such that

eF(v) < eF(u),∀u,v ∈ K, then F is a strictly exponentially quasi convex function.

Proof. By the exponentially convexity of the function F,

∀u,v ∈ K, t ∈ [0,1], we have

eF(u+t(v−u)) ≤ (1− t)eF(u)+ teF(v) < eF(u),

since eF(v) < eF(u), which shows that the function F is strictly exponentially quasi convex.

We now derive some properties of the differentiable exponentially convex functions.

Theorem 3.7. Let F be a differentiable function on the convex set K. Then the function F is exponentially

convex function, if and only if,

eF(v)− eF(u)≥ 〈eF(u)F ′(u),v−u〉, ∀v,u ∈ K. (3.1)
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Proof. Let F be a exponentially convex function. Then

eF(u+t(v−u)) ≤ (1− t)eF(u)+ teF(v), ∀u,v ∈ K,

which can be written as

eF(v)− eF(u) ≥ {eF(u+t(v−u))− eF(u)

t
}.

Taking the limit in the above inequality as t→ 0 , we have

eF(v)− eF(u) ≥ 〈eF(u)F ′(u),v−u)〉,

which is (3.1), the required result.

Conversely, let (3.1) hold. Then

∀u,v ∈ K, t ∈ [0,1], vt = u+ t(v−u) ∈ K, we have

eF(v)− eF(vt) ≥ 〈eF(vt)F ′(vt),v− vt)〉

= (1− t)〈eF(vt)F ′(vt),v−u〉. (3.2)

In a similar way, we have

eF(u)− eF(vt) ≥ 〈eF(vt)F ′(vt),u− vt)〉

= −t〈eF(vt)F ′(vt),v−u〉. (3.3)

Multiplying (3.2) by t and (3.3) by (1− t) and adding the resultant, we have

eF(u+t(v−u)) ≤ (1− t)eF(u)+ teF(v),

showing that F is a exponentially convex function.
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Remark 3.1. From (3.1), we have

eF(v)−F(u)−1≥ 〈F ′(u),v−u〉, ∀v,u ∈ K,

which can be written as

F(v)−F(u)≥ log{1+ 〈F ′(u),v−u〉} ∀v,u ∈ K, (3.4)

Changing the role of u and v in (3.4), we also have

F(u)−F(v)≥ log{1+ 〈F ′(v),u− v〉} ∀v,u ∈ K, (3.5)

Adding (3.4) and (3.5), we have

〈F ′(u)−F ′(v),u− v〉 ≥ (〈F ′(u)u− v〉)(〈F ′(v),u− v〉)

which express the monotonicity of the differential F ′(.) of the exponentially convex function.

Theorem 3.7 enables us to introduce the concept of the exponentially monotone operators, which

appears to be new ones.

Definition 3.1. The differential F ′(.) is said to be exponentially monotone, if

〈eF(u)F ′(u)− eF(v)F ′(v),u− v〉 ≥ 0, ∀u,v ∈ H.

Definition 3.2. The differential F ′(.) is said to be exponentially pseudo-monotone, if

〈eF(u)F ′(u),v−u〉 ≥ 0, ⇒ 〈eF(v)F ′(v),v−u〉 ≥ 0, ∀u,v ∈ H.

From these definitions, it follows that exponentially monotonicity implies exponentially pseudo-monotonicity,

but the converse is not true.

Theorem 3.8. Let F be differentiable on the convex set K. Then (3.1) holds, if and only if, F ′ satisfies

〈eF(u)F ′(u)− eF(v)F ′(v),u− v〉 ≥ 0, ∀u,v ∈ K. (3.6)
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Proof. Let F be a exponentially convex function on the convex set K. Then, from Theorem 3.1, we have

eF(v)− eF(u) ≥ 〈eF(u)F ′(u),v−u〉, ∀u,v ∈ K. (3.7)

Changing the role of u and v in (3.7), we have

eF(u)− eF(v) ≥ 〈eF(v)F ′(v),u− v)〉, ∀u,v ∈ K. (3.8)

Adding (3.7) and (3.8), we have

〈eF(u)F ′(u)− eF(v)F ′(v),u− v〉 ≥ 0,

which shows that F ′ is exponentially monotone.

Conversely, from (3.6), we have

〈eF(v)F ′(v),u− v〉 ≤ 〈eF(u)F ′(u),u− v)〉. (3.9)

Since K is an convex set, ∀u,v ∈ K, t ∈ [0,1] vt = u+ t(v−u) ∈ K.

Taking v = vt in (3.9), we have

〈eF(vt)F ′(vt),u− vt〉 ≤ 〈eF(u)F ′(u),u− vt〉

= −t〈eF(u)F ′(u),v−u〉,

which implies that

〈eF(vt)F ′(vt),v−u〉 ≥ 〈eF(u)F ′(u),v−u〉. (3.10)

Consider the auxiliary function

g(t) = eF(u+t(v−u)),

from which, we have

g(1) = eF(v), g(0) = eF(u).
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Then, from (3.10), we have

g′(t) = 〈eF(vt)F ′(vt ,v−u〉 ≥ 〈eF(u)F ′(u),v−u〉. (3.11)

Integrating (3.11) between 0 and 1, we have

g(1)−g(0) =
∫ 1

0
g′(t)dt ≥ 〈eF(u)F ′(u),v−u〉.

Thus it follows that

eF(v)− eF(u) ≥ 〈eF(u)F ′(u),v−u〉,

which is the required (3.1).

We now give a necessary condition for exponentially pseudo-convex function.

Theorem 3.9. Let F ′ be exponentially pseudomonotone. Then F is a exponentially pseudo-convex func-

tion.

Proof. Let F ′ be a exponentially pseudomonotone. Then, ∀u,v ∈ K,

〈eF(u)F ′(u),v−u〉 ≥ 0.

implies that

〈eF(v)F ′(v),v−u〉 ≥ 0. (3.12)

Since K is an convex set, ∀u,v ∈ K, t ∈ [0,1], vt = u+ t(v−u) ∈ K.

Taking v = vt in (3.12), we have

〈eF(vt)F ′(vt),v−u〉 ≥ 0. (3.13)

Consider the auxiliary function

g(t) = eF(u+t(v−u)) = eF(vt), ∀u,v ∈ K, t ∈ [0,1],
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which is differentiable, since F is differentiable function. Then, using (3.13), we have

g′(t) = 〈eF(vt)F ′(vt),v−u)〉 ≥ 0.

Integrating the above relation between 0 to 1, we have

g(1)−g(0) =
∫ 1

0
g′(t)dt ≥ 0,

that is,

eF(v)− eF(u) ≥ 0,

showing that F is a exponentially pseudo-convex function.

Definition 3.3. The function F is said to be sharply exponentially pseudo convex, if there exists a constant

µ > 0 such that

〈eF(u)F ′(u),v−u〉 ≥ 0

⇒

F(v) ≥ eF(v+t(u−v)), ∀u,v ∈ K, t ∈ [0,1].

Theorem 3.10. Let F be a sharply exponentially pseudo convex function on K. Then

〈eF(v)F ′(v),v−u〉 ≥ 0, ∀u,v ∈ K.

Proof. Let F be a sharply exponentially pesudo convex function on K. Then

eF(v) ≥ eF(v+t(u−v)), ∀u,v ∈ K, t ∈ [0,1].

from which we have

0 ≤ lim
t→0
{eF(v+t(u−v))− eF(v)

t
}

= 〈eF(v)F ′(v),v−u〉,

the required result.
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Definition 3.4. A function F is said to be a pseudo convex function, if there exists a strictly positive

bifunction b(., .), such that

eF(v) < eF(u)

⇒

eF(u+t(v−u)) < eF(u)+ t(t−1)b(v,u),∀u,v ∈ K, t ∈ [0,1].

Theorem 3.11. If the function F is exponentially convex function such that eF(v) < eF(u), then the

function F is exponentially pseudo convex.

Proof. Since eF(v) < eF(u) and F is exponentially convex function, then ∀u,v∈K, t ∈ [0,1], we have

eF(u+t l(v,u)) ≤ eF(u)+ t(eF(v)− eF(u))

< eF(u)+ t(1− t)(eF(v)− eF(u))

= eF(u)+ t(t−1)(eF(u)− eF(v)))

< eF(u)+ t(t−1)b(u,v),

where b(u,v) = eF(u)− eF(v) > 0, the required result. This shows that the function F is exponentially

convex function.

We now discuss the optimality condition for the differentiable exponentially convex functions, which

is the main motivation of our next result.

Theorem 3.12. Let F be a differentiable exponentially convex function. Then u ∈ K is the minimum

of the function F, if and only if, u ∈ K satisfies the inequality

〈eF(u)F ′(u),v−u〉 ≥ 0, ∀u,v ∈ K. (3.14)

Proof. Let u ∈ K be a minimum of the function F. Then

F(u)≤ F(v),∀v ∈ K.
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from which, we have

eF(u) ≤ eF(v),∀v ∈ K. (3.15)

Since K is a convex set, so, ∀u,v ∈ K, t ∈ [0,1],

vt = (1− t)u+ tv ∈ K.

Taking v = vt in (3.15), we have

0 ≤ lim
t→0
{eF(u+t(v−u))− eF(u)

t
}

= 〈eF(u)F ′(u),v−u〉. (3.16)

Since F is differentiable exponentially convex function, so

eF(u+t(v−u)) ≤ eF(u)+ t(eF(v)− eF(u), u,v ∈ K, t ∈ [0,1],

from which, using (3.16), we have

eF(v)− eF(u) ≥ lim
t→0
{eF(u+t(v−u))− eF(u)

t
}

= 〈eF(u)F ′(u),v−u〉 ≥ 0,

from which , we have

eF(v)− eF(u) ≥ 0,

which implies that

F(u)≤ F(v), ∀v ∈ K.

This shows that u ∈ K is the minimum of the differentiable exponentially convex function, the required

result.
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Remark 3.2. The inequality of the type (3.14) is called the exponentially variational inequality and

appears to be new one. For the applications, formulations, numerical methods and other aspects of

variational inequalities, see Noor [12, 13].

We now show that the difference of exponentially convex function and exponentially affine convex

function is again an exponentially convex function.

Theorem 3.13. Let f be a exponentially affine convex function. Then F is a exponentially convex

function, if and only if, g = F− f is a exponentially convex function.

Proof. Let f be exponentially affine convex function. Then

e f ((1−t)u+tv) = (1− t)e f (u)+ te f (v), ∀u,v ∈ K, t ∈ [0,1]. (3.17)

From the exponentially convexity of F, we have

eF((1−t)u+tv) ≤ (1− t)eF(u)+ teF(v), ∀u,v ∈ K, t ∈ [0,1]. (3.18)

From (3.17 ) and (3.18), we have

eF((1−t)u+tv)− e f ((1−t)u+tv) ≤ (1− t)(eF(u)− e f (u))+ t(eF(v)− e f (v)), (3.19)

from which it follows that

eg((1−t)u+tv) = eF((1−t)u+tv)− e f ((1−t)u+tv)

≤ (1− t)(eF(u)− e f (u))+ t(eF(v)− e f (v)),

which show that g = F− f is an exponentially convex function.

The inverse implication is obvious.
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4 Conclusion

In this paper, we have introduced and studied a new class of convex functions, which is called the

exponentially convex function. It has been shown that exponentially convex functions enjoy several

properties which convex functions have. We have shown that the minimum of the differentiable expo-

nentially convex functions can be characterized by a new class of variational inequalities, which is called

the exponential variational inequality. One can explore the applications of the exponentially variational

inequalities This may stimulate further research.
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