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Upper Bounds for the Spectral Radius of Block
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Abstract

In this paper, we discuss some upper bounds for the spectral radius of block Hadamard

product of block H-matrices. By using norm structure of block matrices, we establish esti-

mations for the spectral radius.
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1 Introduction

Spectral radius of matrices and H-matrices are used in many fields such as numerical analysis, control

theory, mathematical physics, image and signal processing. In recent years, there are many studies on

bounds for the eigenvalues and spectral radius of matrices [2, 3, 4, 5, 8, 9, 10, 12]. Particularly, these

papers are interested in the upper and lower bounds for the spectral radius of Hadamard product of

nonnegative or positive semidefinite matrices. In this paper, we investigate bounds for the spectral radius

of block Hadamard product of two block H-matrices.
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For a positive integer n, the set of all n× n complex (or real) matrices is denoted by Cn×n (or Rn×n)

throughout the paper. Let A = (ai j) and B = (bi j) be two real n× n matrices. Then A ≥ B(> B) if

ai j ≥ bi j(> bi j) for all i, j ∈ {1, . . . ,n}. If A ≥ 0(> 0), we say A is nonnegative (positive) matrix. The

spectral radius of A is denoted by ρ(A). If A is a nonnegative matrix, then ρ(A) ∈ σ(A), by the Perron-

Frobenius theorem, where σ(A) is the spectrum of A.

A matrix A ∈ Cn×n is said to be reducible if there exists a permutation matrix P such that

PT AP =

(
B C
0 D

)
,

where B and D are square matrices of order at least one. If A is not reducible, then it is called irreducible.

We note that any 1× 1 complex matrix is irreducible. For an irreducible nonnegative matrix A, there

exists a positive vector u such that Au = ρu where u is called right Perron eigenvector of A.

A matrix A ∈ Cn×n is Hermitian if A∗ = A where A∗ is the conjugate transpose of A. A Hermitian

matrix A is said to be positive definite (positive semidefinite) if x∗Ax > 0 (x∗Ax ≥ 0) for all nonzero

x ∈ C.

Let A = (Ai j) ∈ Cn×n be a block matrix partitioned into p× p blocks in the following form,

A =


A11 A12 · · · A1p

A21 A22 · · · A2p
...

...
. . .

...
Ap1 Ap2 · · · App,


in which Ai j ∈ Cni,n j and ∑

p
i=1 ni = n. If each diagonal block Aii is nonsingular and

‖A−1
ii ‖

−1 > ∑
j 6=i
‖Ai j‖ for all i = 1,2, . . . , p,

then A is said to be block strictly diagonally dominant with respect to ‖·‖. If there exits x1,x2, . . . ,xk > 0

such that

xi‖A−1
ii ‖

−1 > ∑
j 6=i

x j‖Ai j‖ for all i = 1,2, . . . , p,

then A is said to be a block H-matrix.
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Let A = (Ai j) ∈ Cn×n and B = (Bi j) ∈ Cn×n for Ai j, Bi j ∈ Cni,n j and ∑
p
i=1 ni = n. Then the block

Hadamard product of A and B is defined by A2B = (Ai jBi j). If A and B are both positive semidefinite

(or both positive definite) then A2B is positive semidefinite (or positive definite, respectively) [6].

The block Kronecker product of A and B is defined by A�B = (ABi j)
j=1,...,t
i=1,...,s where ABi j is the

usual matrix product of A and Bi j. For A = (Ai j) ∈ Cn×n, the block Kronecker product is given by

A�B = (Ai j �B) j=1,...,q
i=1,...,p .

Two matrices A and B are called block commuting if every block of A commutes with every block of

B.

Throughout the paper, a block matrix we consider is p× p and each block is a matrix in Cni for
p

∑
i=1

ni = n. We call each block of a matrix A as an entry of A; i.e., i j’th entry of A is Ai j. Taking matrix

norm of each entry of A, we define Ã = (‖Ai j‖) where ‖ ·‖ is a consistent matrix norm such as Frobenius

norm ‖ · ‖F , 1-norm ‖ · ‖1 and ∞-norm ‖ · ‖∞.

2 Lemmas

In this section, we shall give some lemmas we use throughout.

Lemma 2.1. [7] If A is an n×n irreducible nonnegative matrix and Az ≤ kz for a nonnegative nonzero

vector z, then ρ(A)≤ k.

Lemma 2.2. [1] Let A be an n× n nonnegative matrix. Then either A is irreducible or there exists a

permutation P such that

PT AP =


A1 A12 · · · A1p

A2 · · · A2p
. . .

...
Ak


and each Ai is irreducible, i = 1, . . . , p.

Lemma 2.3. [1] Let A be a nonnegative matrix and Aα be a principal submatrix of A. Then ρ(Aα) ≤

ρ(A). If A is irreducible and Aα 6= A, ρ(Aα)< ρ(A).
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Lemma 2.4. [12] Let A = (Ai j) be a block p× p matrix where Ai j are nonnegative ni×n j matrices. If

Ã = (‖Ai j‖) then ρ(A)≤ ρ(Ã) where ‖ · ‖ is a consistent matrix norm.

Lemma 2.5. [11] Let A = (ai j) be a nonnegative matrix. Then

ρ(A)≤max
i 6= j

1
2

{
aii +a j j +

[
(aii−a j j)

2 +4∑
k 6=i

aik ∑
k 6= j

a jk
]1/2
}
.

Lemma 2.6. [7] Let A and B be n×n matrices and D and E be diagonal n×n matrices. Then

D(A◦B)E = (DAE)◦B = (DA)◦ (BE) = (AE)◦ (DB) = A◦ (DBE).

By [4] and [11], we have following results on the upper bound of spectral radius of Hadamard product

of two matrices.

Lemma 2.7. If A and B are two nonnegative matrices, then

(i) ρ(A◦B)≤max
i

{
2aiibii +ρ(A)ρ(B)−aiiρ(B)−biiρ(A)

}
,

(ii) ρ(A◦B)≤max
i 6= j

1
2

{
aiibii +a j jb j j +

[
(aiibii−a j jb j j)

2

+4(ρ(A)−aii)(ρ(B)−bii)(ρ(A)−a j j)(ρ(B)−b j j)
]1/2

}
.

3 Main Results

It is known that for the Hadamard product of two nonnegative n×n matrices A and B, we have ρ(A◦B)≤

ρ(A)ρ(B). It is natural to ask whether the same is valid for the block Hadamard product. The answer to

the question is negative in view of the following example.
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Example 3.1. Consider the following two nonnegative 2×2 block matrices A and B.

A =



3 1
... 0 1

1 2
... 1 1

. . . . . . . . . . . . . . .

1 1
... 2 2

1 2
... 1 3


and B =



1 0
... 1 0

1 1
... 0 1

. . . . . . . . . . . . . . .

0 0
... 1 0

1 0
... 1 1



Then ρ(A) = 5.7669, ρ(B) = 1 and ρ(A2B) = 7.1875, but

ρ(A2B)> ρ(A)ρ(B).

Below we show that the upper bound holds for positive (semi)definite matrices.

Theorem 3.1. Let A and B be positive semidefinite and block commuting matrices. Then

ρ(A2B)≤ ρ(A)ρ(B). (3.1)

Proof. First note that A�B is a positive semidefinite matrix and A2B is a principal submatrix of A�

B. This implies that ρ(A2B) ≤ ρ(A�B) by Lemma 2.3. Then since λmax(A�B)≤ λmax(AB) by

Proposition 2.11 in [6], we get ρ(A�B)≤ ρ(AB). Using the fact that ρ(AB)≤ ρ(A)ρ(B) for positive

semidefinite matrices, we obtain the result.

As it is obvious, this bound is restrictive. In general, we get similar upper bounds for the spectral

radius of block Hadamard product of any two matrices to the results related to Hadamard product in [4]

and [11].

Let Ã = (‖Ai j‖) and B̃ = (‖Bi j‖). We note that by Lemma 2.4, we have

ρ(A2B) = ρ
(
(Ai jBi j)

)
≤ ρ

((
‖Ai jBi j‖

))
≤ ρ

((
‖Ai j‖‖Bi j‖

))
= ρ(Ã◦ B̃). (3.2)

Then the followings are straightforward by Lemma 2.7.
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Theorem 3.2. Let A = (Ai j) and B = (Bi j) are p× p block matrices. Then

(1) ρ(A2B)≤max
i

{
2‖Aii‖‖Bii‖+ρ(Ã)ρ(B̃)−‖Aii‖ρ(B̃)−‖Bii‖ρ(Ã)

}
.

(2)ρ(A2B)≤max
i6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[
(‖Aii‖‖Bii‖−‖A j j‖‖B j j‖)2

+4(ρ(Ã)−‖Aii‖)(ρ(B̃)−‖Bii‖)(ρ(Ã)−‖A j j‖)(ρ(B̃)−‖B j j‖)
]1/2

}
.

Now, we give some upper bounds for the spectral radius of block Hadamard product of block H-

matrices.

Theorem 3.3. Let A = (Ai j) and B = (Bi j) be block H-matrices. Then,

ρ(A2B)< max
i
{‖Aii‖‖Bii‖+‖A−1

ii ‖
−1‖B−1

ii ‖
−1}. (3.3)

Proof. Since A and B are block H-matrices, there exists positive numbers u1, . . . ,up and v1, . . . ,vp such

that

ui‖A−1
ii ‖

−1 > ∑
j 6=i

u j‖Ai j‖ for all i, (3.4)

vi‖B−1
ii ‖

−1 > ∑
j 6=i

v j‖Bi j‖ for all i. (3.5)

Let Ã = (‖Ai j‖) and B̃ = (‖Bi j‖), and w = u◦ v. Then for any i = 1, . . . , p,

(
(Ã◦ B̃)w

)
i = ‖Aii‖‖Bii‖wi +∑

j 6=i
‖Ai j‖‖Bi j‖w j

≤ ‖Aii‖‖Bii‖wi +∑
j 6=i
‖Ai j‖u j ∑

j 6=i
‖Bi j‖v j

< ‖Aii‖‖Bii‖wi +‖A−1
ii ‖

−1ui‖B−1
i j ‖

−1vi

= (‖Aii‖‖Bii‖+‖A−1
ii ‖

−1‖B−1
i j ‖

−1)wi.

If Ã◦ B̃ is irreducible, by (3.2) and Lemma 2.1, we have

ρ(A2B)≤ ρ(Ã◦ B̃)< max
i

{
‖Aii‖‖Bii‖+‖A−1

ii ‖
−1‖B−1

i j ‖
−1}.
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If Ã◦ B̃ is reducible, let T = (ti j) be an p× p permutation matrix with t12 = t23 = · · ·= tp−1p = tp1 = 1 and

remaining ti j = 0. Then both Ã+ εT and B̃+ εT are irreducible nonnegative matrices for any positive

real number ε . Substituting Ã+ εT and B̃+ εT for Ã and B̃, respectively, in the first case and letting

ε → 0, the result follows by continuity.

The upper bound in Theorem 3.3 can be improved in the following theorem.

Theorem 3.4. Let A and B be block H-matrices, then

ρ(A2B)< max
i6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[
(‖Aii‖‖Bii‖−‖A j j‖‖B j j‖)2

+4‖A−1
ii ‖

−1‖B−1
ii ‖

−1‖A−1
j j ‖
−1‖B−1

j j ‖
−1]1/2

}
. (3.6)

Proof. Since A and B be block H-matrices, we have positive numbers u1, . . . ,up and v1, . . . ,vp that

satisfies (3.4) and (3.5). Consider Ã and B̃ and let U and V be positive diagonal matrices such that

U = diag(u1,u2, . . . ,up) and V = diag(v1,v2, . . . ,vp). Then, define Â = U−1ÃU and B̂ = V−1B̃V such

that

Â =


[1.5]‖A11‖ u2

u1
‖A12‖ · · · up

u1
‖A1p‖

u1
u2
‖A21‖ ‖A22‖ · · · up

u2
‖A2p‖

...
...

. . .
...

u1
up
‖Ap1‖ u2

up
‖Ap2‖ · · · ‖App‖

 , B̂ =


[1.5]‖B11‖ v2

v1
‖B12‖ · · · vp

v1
‖B1p‖

v1
v2
‖B21‖ ‖B22‖ · · · vp

v2
‖B2p‖

...
...

. . .
...

v1
vp
‖Bp1‖ v2

vp
‖Bp2‖ · · · ‖Bpp‖.

 .

Note that by Lemma 2.6, we have Â ◦ B̂ = (U−1ÃU) ◦ (V−1B̃V ) = (VU)−1(Ã ◦ B̃)(VU). Then by (3.2)
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and Lemma 2.5,

ρ(A2B)≤ ρ(Ã◦ B̃) = ρ(Â◦ B̂)

≤max
i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[(
‖Aii‖‖Bii‖−‖A j j‖‖B j j‖

)2

+4∑
k 6=i

‖Aik‖uk

ui

‖Bik‖vk

vi
∑
k 6= j

‖A jk‖uk

u j

‖B jk‖vk

v j

]1/2}
≤max

i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[(
‖Aii‖‖Bii‖−‖A j j‖‖B j j‖

)2

+4∑
k 6=i

‖Aik‖uk

ui
∑
k 6=i

‖Bik‖vk

vi
∑
k 6= j

‖A jk‖uk

u j
∑
k 6= j

‖B jk‖vk

v j

]1/2}
< max

i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[(
‖Aii‖‖Bii‖−‖A j j‖‖B j j‖

)2

+4‖A−1
ii ‖

−1‖B−1
ii ‖

−1‖A−1
j j ‖
−1‖B−1

j j ‖
−1
]1/2}

.

Remark 3.1. The upper bound in (3.6) is sharper than the bound in (3.3) . Without loss of generality,

for i 6= j, assume that

‖Aii‖‖Bii‖+‖A−1
ii ‖

−1‖B−1
ii ‖

−1 ≥ ‖A j j‖‖B j j‖+‖A−1
j j ‖
−1‖B−1

j j ‖
−1.

Then

‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+
[
(‖Aii‖‖Bii‖−‖A j j‖‖B j j‖)2

+4‖A−1
ii ‖

−1‖B−1
ii ‖

−1‖A−1
j j ‖
−1‖B−1

j j ‖
−1]1/2

≤ ‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+
[
(‖Aii‖‖Bii‖−‖A j j‖‖B j j‖)2

+4‖A−1
ii ‖

−1‖B−1
ii ‖

−1(‖Aii‖‖Bii‖+‖A−1
ii ‖

−1‖B−1
ii ‖

−1−‖A j j‖‖B j j‖
)]1/2

= ‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+
[(
‖Aii‖‖Bii‖−‖A j j‖‖B j j‖+2‖A−1

ii ‖
−1‖B−1

ii ‖
−1)2]1/2

= 2
(
‖Aii‖‖Bii‖+‖A−1

ii ‖
−1‖B−1

ii ‖
−1).
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Next upper bound for the spectral radius of block Hadamard product improves the bound in (3.6) for

block strictly diagonally dominant matrices.

Theorem 3.5. Let A and B be block H-matrices. Then

ρ(A2B)< min
{

max
i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[
(‖Aii‖‖Bii‖−‖A j j‖‖B j j‖)2

+4αiα j‖B−1
ii ‖

−1‖B−1
j j ‖
−1]1/2

}
, (3.7)

max
i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[
(‖Aii‖‖Bii‖−‖A j j‖‖B j j‖)2

+4βiβ j‖A−1
ii ‖

−1‖A−1
j j ‖
−1]1/2

}}
,

where αi = maxk 6=i ‖Aik‖ and βi = maxk 6=i ‖Bik‖.

Proof. We first show the first inequality, the second follows in a similar way. Since B is block H-matrix,

there exists positive numbers v1, . . . ,vp such that V = diag(v1, . . . ,vp) is positive and B̂=V−1B̃V is block

strictly diagonally dominant where B̃ = (‖Bi j‖). Let Ã = (‖Ai j‖). Here we note that Ã ◦ (V−1B̃V ) =

V−1(Ã◦ B̃)V by Lemma 2.6. Then, by (3.2) and Lemma 2.5 we get,

ρ(A2B)≤ ρ(Ã◦ B̃) = ρ(Ã◦ B̂)

≤max
i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[(
‖Aii‖‖Bii‖−‖A j j‖‖B j j‖

)2

+4∑
k 6=i
‖Aik‖

‖Bik‖vk

vi
∑
k 6= j
‖A jk‖

‖B jk‖vk

v j

]1/2}
≤max

i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[(
‖Aii‖‖Bii‖−‖A j j‖‖B j j‖

)2

+4max
k 6=i
‖Aik‖∑

k 6=i

‖Bik‖vk

vi
max
k 6= j
‖A jk‖∑

k 6= j

‖B jk‖vk

v j

]1/2}
< max

i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[(
‖Aii‖‖Bii‖−‖A j j‖‖B j j‖

)2

+4αiα j‖B−1
ii ‖

−1‖B−1
j j ‖
−1]1/2

}
where αi = max

k 6=i
‖Aik‖.
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Remark 3.2. In (3.7), if additionally A and B are block strictly diagonally dominant matrices, the

bound in (3.7) is sharper than the one in (3.6) since αi = maxk 6=i ‖Aik‖ ≤ ∑k 6=i ‖Aik‖ < ‖A−1
ii ‖−1 and

βi = maxk 6=i ‖Bik‖ ≤ ∑k 6=i ‖Bik‖< ‖B−1
ii ‖−1.

Remark 3.3. If only one of the matrices A and B is block H-matrix, for instance A is block H-matrix,

then

ρ(A2B)<max
i 6= j

1
2

{
‖Aii‖‖Bii‖+‖A j j‖‖B j j‖+

[
(‖Aii‖‖Bii‖−‖A j j‖‖B j j‖)2

+4βiβ j‖A−1
ii ‖

−1‖A−1
j j ‖
−1]1/2

}
.

Lastly, we shall give an upper bound for the spectral radius of block Hadamard product of a class of

positive definite matrices. Here, we shall use the notation |A| ≥ |B| when |ai j| ≥ |bi j| for all i, j.

Definition 3.1. A block matrix A is said to be block diagonally dominant of its block column entries (or

block row entries) if

|Aii| ≥ |A ji| (or |Aii| ≥ |Ai j|)

for each i = 1, . . . , p and all j 6= i. Similarly, A is said to be block diagonally subdominant of its block

column (or row) entries if the inequalities are reversed.

Lemma 3.6. Let A and B be block matrices and D and E are block diagonal matrices. Then, if

i) A block commutes with D, D(A2B)E = A2(DBE),

ii) B block commutes with E, D(A2B)E = (DAE)2B.

Theorem 3.7. Let A, B be nonnegative positive semidefinite matrices. If there exists positive block di-

agonal matrix D such that

(1) DBD−1 is block diagonally dominant of its block column entries and D block commutes with

either A or B, then

ρ(A2B)≤ ρ(A)max
i

ρ(Bii).
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(2) If DBD−1 is block diagonally subdominant of its block column entries and D block commutes with

either A or B, then

ρ(A)min
i

ρ(Bii)≤ ρ(A2B).

Proof. First note that ρ(A2B) = ρ(A2(DBD−1)) by Lemma 3.6. Moreover, the diagonal blocks of B

and DBD−1 are the same. We may assume that B is block diagonally dominant of its column entries

since DBD−1 is so. Then,


[1.2]A11B11 A12B12 · · · A1pB1p

A21B21 A22B22 · · · A2pB2p
...

...
. . .

...
Ap1Bp1 Ap2Bp2 · · · AppBpp

≤

[1.2]A11B11 A12B22 · · · A1pBpp

A21B11 A22B22 · · · A2pBpp
...

...
. . .

...
Ap1B11 Ap2B22 · · · AppBpp



≤


[1.2]A11Bkk A12Bkk · · · A1pBkk

A21Bkk A22Bkk · · · A2pBkk
...

...
. . .

...
Ap1Bkk Ap2Bkk · · · AppBkk


where Bkk ≥ Bii for all i. In other words,

A2B≤ Adiag(B11, . . . ,Bpp)≤ Adiag(Bkk, . . . ,Bkk).

This implies that

ρ(A2B)≤ ρ(Adiag(B11, . . . ,Bpp))≤ ρ(A)ρ(Bkk),

where the last inequality follows from the submultiplicative property of spectral radius of positive semidef-

inite matrices.

The proof related to block diagonal dominance of block row entries and the second part of the theorem

follows similarly.
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4 Examples

In this section, we shall give three examples that compares upper bounds obtained throughout the paper.

First two examples demonstrates that upper bound in Theorem 3.4 might be better than the one in The-

orem 3.2 or vice versa. On the other hand, the upper bound in Theorem 3.7 is more accurate than the

others in some cases for matrices that are block diagonally dominant of its column entries.

Example 4.1. Let A and B be block H-matrices such that

A =



1 3
... 0 1

2 1
... 1 1

. . . . . . . . . . . .

1 1
... 2 2

2 1
... 3 1


, B =



1 0
... 0 0

1 2
... 1 1

. . . . . . . . . . . .

1 1
... 1 2

0 1
... 1 1


.

With respect to ∞-norm, we have

Ã =

(
4 2
3 4

)
, B̃ =

(
3 2
2 3

)
,

and their spectral radii are ρ(Ã) = 6.4495 and ρ(B̃) = 5. Inverses of block diagonal entries of block

matrices are

A−1
11 =

(
−.2 .6
.4 −.2

)
, A−1

22 =

(
−.25 .5
.75 −.5

)
, B−1

11 =

(
1 0
−.5 .5

)
, B−1

22 =

(
−1 2
1 −1

)
.

Then we have ρ(A2B) = 12.2661, and ρ(A)ρ(B) = 20.778 for which ρ(A) = 5.6909 and ρ(B) =

3.6511. According to inequalities given in Theorems 3.2-3.5, respectively, we have ρ(A2B) ≤ 16.899,

ρ(A2B)< 13.25, ρ(A2B)< 12.5774, and ρ(A2B)< 13.4142.
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Example 4.2. Let A and B be H-matrices such that

A =



2 −1
... .5 0

−1 2
... .25 .25

. . . . . . . . . . . .

.5 0
... 2 −1

.25 .25
... −1 2


, B =



2 0
... .125 .125

1 1
... 0 .25

. . . . . . . . . . . .

.125 .125
... 2 0

0 .25
... 1 1


.

Then ρ(A) = 3.25, ρ(B) = 2.25, ρ(A2B) = 3.0312 and ρ(A)ρ(B) = 7.3125. With respect to ∞-norm,

we have

Ã =

(
3 .5
.5 3

)
, B̃ =

(
2 .25
.25 2

)
,

and their spectral radii are ρ(Ã) = 3.5 and ρ(B̃) = 2.25. Inverses of block diagonal entries of block

matrices are

A−1
11 = A−1

22 =

(
.6667 .3333
.3333 .6667

)
, B−1

11 = B−1
22 =

(
.5 0
−.5 1

)
.

With respect to the inequalities given in Theorems 3.2-3.5, we have, respectively, ρ(A2B) ≤ 6.125,

ρ(A2B)< 6.6667, ρ(A2B)< 6.6667, and ρ(A2B)< 6.5.

Example 4.3. Let matrices A and B be block diagonally dominant of its column entries such that

A =



3 1
... 0 0

1 2
... 0 1

. . . . . . . . . . . .

0 0
... 2 2

0 1
... 2 3


, B =



2 1
... 1 0

1 1
... 0 1

. . . . . . . . . . . .

1 0
... 1 1

0 1
... 1 2


.
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Then ρ(A) = 4.8422, ρ(B) = 3.5616, ρ(A2B) = 11.949 and ρ(A)ρ(B) = 17.246. With respect to ∞-

norm, we have

Ã =

(
4 1
1 5

)
, B̃ =

(
3 1
1 3

)
,

and their spectral radii are ρ(Ã) = 5.618 and ρ(B̃) = 4. Inverses of block diagonal entries of block ma-

trices are

A−1
11 =

(
.4 −.2
−.2 .6

)
, A−1

22 =

(
1.5 −1
−1 1

)
, B−1

11 =

(
1 −1
−1 2

)
, B−1

22 =

(
2 −1
−1 1

)
.

Then we have ρ(A2B)≤ 15.3028, ρ(A2B)< 15.1333, ρ(A2B)< 15.0184, and ρ(A2B)< 15.0366

according to Theorems 3.2-3.5, respectively.. With respect to Theorem 3.7, ρ(A2B) ≤ ρ(A)ρ(B11) =

12.6769 where ρ(B11) = ρ(B22) = 2.618.
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