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Variational Inequality and Complementarity
Problem

Sudarsan Nanda*

Abstract

Variational inequality and Complementarity have much in common, but there has been
little direct contact between the researchers of these two related fields of mathematical sci-
ences. Several problems arising from Fluid Mechanics, Solid Mechanics, Structural Engi-
neering, Mathematical Physics, Geometry, Mathematical Programming etc. have the formu-
lation of a Variational Inequality or Complementarity Problem. People working in applied
mathematics mostly deal with infinite dimensional case and they deal with Variational in-
equality whereas people working in operations research mostly deal with finite dimensional
problem and they use complementarity problem. Variational inequality is a formulation for
solving the problem where we have to optimize a functional. The theory is derived by us-
ing the techniques of nonlinear functional analysis such as fixed point theory and theory of
monotone operators etc.

In this paper we give a brief review of the subject. This paper is divided into four sections.
Section 1 deals with nonlinear operators which are required to describe the results. Sections

2, 3, 4 and 5 deal with Variational inequality, Equilibrium Problem and Complementarity
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Problem. Section 6 describes semi-inner-product spaces and Variational Inequality in semi-

inner-product spaces.

Keywords:Generalized invexity, Minimax fractional programming, optimal solutions, Parametric suffi-
cient optimality conditions.

2010 AMS Subject Classification: 90C30, 90C32, 90C34

1 Nonlinear Operators

In this section we discuss certain nonlinear operators, which are useful in the study of variational in-
equalities and complementarity problem.

Let X be a real normed linear space and let X* be the dual space of X. Let the pairing between x € X
and x* € X* be denoted by (x*,x). Let T be a of a map from a subset D(T) of X into X*. T is said to be

monotone if

(Tx—Ty,x—y) >0 forallx,y € D(T),

and strictly monotone if 7' is monotone and strict inequality holds whenever x # y. T is a.-monotone if
there is a continuous strictly increasing function o : [0,1) — [0, 1] with a(0) =0 and a/(r) — ccas r — o

such that

(Tx—Ty,x=y) = |lx—ylla(llx=yl))

for all x,y € D(T). T is strongly monotone if o/(r) = cr for some ¢ > 0. T is coercive on subset K of

D(T) if there exists a function ¢ : (0,00) — [—o0,e0] with ¢(r) — eo as r — oo such that
(Tx,x) > ||x||c(||x||) forallx e K.

Thus T is coercive on K if K is bounded, while T is coercive on an unbounded K if and only if

(Tx,x)
[l

— o0 as ||x|| = e, x € K.



Journal of Orissa Mathematical Society 87

T is hemicontinuous if D(T') is convex for any x,y € D(T), the map t — T (tx+ (1 —1¢)y) of [0, 1] to X*
is continuous for the natural topology of [0, 1] and the weak topology of X*.

Examples:
(a) Let f: R — R be a monotonically increasing function. Then f is a monotone operator.

(b) Let H be a Hilbert space and T : H — H be a compact self-adjoint linear operator. Then T is

monotone operator if all the eigen-values of T are non-negative.
(c) Let H be a Hilbert space. An operator T : H — H is said to be nonexpansive if
|Tx—Ty|| <|lx—y| forallx,ycH.
If T is nonexpansive, then / — T is a monotone operator.

(d) Let H be a Hilbert space and C a closed convex subset of H. Let P, denote the point of minimum

distance of C from x, that is,
P, = {Z €C:||lz—x| = inf ny”} )
yeC
Then P is a monotone operator on H.
(e) Let H be a Hilbert space. Then an operator 7 : H — H is said to be accretive if
lx—y|| < ||Tx—Ty|| forallx,yec H.

Then T : H — H is monotone if I + AT is accretive for every A > 0.

Theorem 1.1. If T : D(T) C X — X* is at-monotone, then it is strictly monotone (hence monotone) and

coercive in particular every strongly monotone operator is strictly monotone and coercive.
Let X be nls and let X* be its dual. A map 7 : X — X* is said to a duality map if for any x € X,

(i) (Tx,x) = |[|Tx|| |lx[|, and
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(@) [|Tx| = [|x]-

A duality map can be constructed in any nls in the following way : By Hahn-Banach theorem, for any
x € X, there exists at least one bounded linear functional y, € X* such that y, = 1 and (y,,x) = ||x|.
Taking one such functional y, and setting 7, = ||x||yx and T(—x) = — ||x|| yx, we get ||Tx|| = ||x|| and

(Te,x) = (| Tl -

Theorem 1.2. In general a duality map T : X — X* is multivalued. It is single-valued if X* is strictly

convex.

Theorem 1.3. If T : X — X* is a duality map, then it is monotone and coercive. If further X is strictly

convex, then T is strictly monotone.

Theorem 1.4. Let X be a real Banach space and F : X — X* be a nonlinear operator. If the Gateaux

derivative F'(x) exists for every x € X and is positive semidefinite, then F is monotone.
Theorem 1.5. Let f be a proper convex function defined on X. If f is differentiable, then V f is monotone.

Theorem 1.6. Let f be a proper differentiable function defined on X. If Vf is monotone, then f is

convex.
2 Variational Inequalities

In this section we shall discuss some basic properties of variational inequalities. Before we state the

definition we shall first discuss some examples where variational inequalities arise.

Example 2.1. Let / = [a,b] C R. Let f be a real-valued differentiable function defined on I. Suppose,

we seek for the points x € [ for each

f(x) = min f(y).

yel

Then three cases will arise in this case :
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(i) a<x<y=f'(x)=0
(ii) a=x=f'(x) >0
(iil) x=b= f'(x) <0.
All these cases can be put together as a single inequality as follows:
f'(x)(y—x)>0 forally eI
This is an example of variational inequality.

Example 2.2. Let K be a closed convex set in R” and let f : K — R be differentiable. We characterize

the points x € K for which

f(x) = min f(y).

yeK

If there exists x € K which satisfies the above equation and if F(x) = grad f(x), then x is a solution of
the following inequality

xeK:(F(x),y—x)>0 forally € K.

Conversely, if f is differentiable and convex and if the above inequality is satisfied by x, then

f(x) = min f(y).

yeK
Example 2.3. Let Q be a bounded open domain in R" with the boundary 7. In some problems of

mechanics we seek a real-valued function x — u(x) which, in Q, satisfies the classical equation

v f. feQ Z ou 2.1)
—Vu—u=f, U=y — .
i=1 8xi2
with the boundary conditions
0 0
u>0, 22 >0 u2f —0oonT. 2.2)
v v

where % denotes differentiation along the outward normal to I'. If we write

1

Sa(v,v) = (fv)

J(v):2
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where

du Jdv

a(u,v) = ,Zi/ E adex—i-/uvdx
() = [ prax

and if we introduce the closed convex set K defined by
K={v:v>0onT},
then the problem given by (2.1) and (2.2) is equivalent to finding u € K such that

J(u) = inf J(v).

vek

This admits a unique solution u characterized by
uecK: a(u,y—u)>(f,v—u) forallveKk.
This is called a variational inequality problem.

We shall now state the problem in the most general setting.
Let X be a reflexive real Banach space and let X* be its dual. Let T be a monotone hemicontinuous
mapping from X to X* and let K be a nonempty closed convex subset of the domain D(T') of T. Then a

variational inequality is stated as follows:
x€K:(Tx,y—x)>0 forally e K. (2.3)

Any x € X which satisfies (2.3)) is called a solution of the variational inequality. Let us write S(7,K) to
denote the set of all solutions of variational inequality (2.3). We shall, in fact, consider a more general
inequality which is stated as follows:

For each given element wy € X*,

x€K:(Tx—wp,y—x)>0 forally € K. 2.4)
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Inequality (2.3)) can also be written by replacing the subset K of X by an extended real-valued function
defined on X. For any subset K of X, let 0, called the indicator function of K, be the function defined on

X by

0, ifyek;
51{()’):{00 ifydK

Then it is easy to verify that x € K is a solution of (2.3)) if and only if
(Tx,y—x) > 0g(x) — Ok (y) forally € K.
Therefore we consider, as a generalization of inequality (2.3), the inequalities of the form :

(Tx,y—x) > f(x) = f(y) forally €K, (2.5)

where f is an arbitrary extended real-valued function defined on X.
Observe that if f = 0, then (2.5)) reduces to the VI(2.3) and if 7 = 0, then we are in the framework of

the calculus of variations where we minimize the extended real-valued functional f, i.e., we have

f(x) < f(y) forallyeX

or

f(x) = min f(y).

yeX
Theorem 2.4. Let T be a monotone, hemi-continuous mapping of a subset D(T) of X into X* and K
a convex subset of D(T). Then for a given element wy € X*, any solution of inequality 2.4) is also a
solution of the equality

(Ty —wo,y—x) >0 Vy€eK. (2.6)

Theorem 2.5. Let T be a hemi-continuous mapping of X into X*. Suppose that for any pair of vectors
xo € K and wy € X*,

(Ty —wo,y—x) >0 VyeK. 2.7)

Then Txg = wo.
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The following result gives uniqueness of solution when it exists.

Theorem 2.6. If the mapping T from X into X* is strictly monotone, then the inequality (2.4) can have

atmost one solution.

Theorem 2.7. If either the mapping T is strictly monotone or the function f is strictly convex, then the

inequality (2.5) can have atmost one solution.
We shall now state that the following fundamental theorem for variational inequality.

Theorem 2.8. Let T be a monotone hemicontinuous map of a closed convex subset K of a reflexive real
Banach space X, with 0 € K, into X* and if K is not bounded, let T be coercive on K. Then for each

given element wy € X* there is an x € K such that inequality (2.4) holds, i.e.,
xe€K: (Tx—wp,y—x) >0 VyeKk.
3 Types of Variational Inequalities

(1) The Variational like Inequality Problem (VLIP)

Find x € K such that

(Tx,0(u,x)) >0 forallu € K.

(2) Variational Type Inequality Problem (VTIP)

For z € K find u € K such that

<T (z—;u) ,x—u) >0 forallx € K.

(3) Strongly Nonlinear Variational like Inequality Problem (SNVIP)

Find u € K such that

(Tu,6(x,u)) > (Au,0(x,u)) forall x € K.
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(4) Strongly Nonlinear Implicit Variational like Inequality Problem (SNIVIP)

Find u € K such that
(Tu,g(x) —g(u)) > (Au,g(x) — g(u)) forall x € K.

(5) Nonlinear Quasi-Variational Inequality Problem (NQVIP)

Find u € K such that u € S(u) and
(T (u),x—u) >0 forall x € S(u).
(6) Quasi-Variational like Inequality Problem (QVLIP)
Find u € K such that u € S(u) and
(T (u),0(x,u)) >0 forall x € S(u).

(7) Quasi-Variational Type Inequality Problem (QVTIP)

For z € K, find u € K such that u € S(”T”), and

<T (z—;u) ,xu) >0 foralleS(Zj;u).

(8) Generalized Quasi-Variational Type Inequality Problem (GQVTIP)

ForzeK,finduc K, w e X* suchthatuES(”T“),T(”T”) and

(w,x—u) >0 foralleS(Z—;M).

Theorem 3.1. Let K be a nonempty closed convex subset of a reflexive real Banach space X with
dual X*, 0 is an interior point of K. Let S=T — 0, T,0 : K — K* be hemicontinuous. T uniformly
monotone with a gauge function c\(r), U uniformly relaxed Lipschitz with another gauge function c;(r).

Let G C X x X* be such that
G={(v,Su+z):(x,u—z)>0VveK}.

Then NVI: u € K : (Su,v—u) > 0 has a unique solution.
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Theorem 3.2. S: K — X* is p-monotone, T : K — X* is p-Lipschitz, S,T are hemicontinuous, K is

nonempty closed convex set in X. Then u € K is a solution of the VI
(Su—Tu—w,v—u)>0Vvek

iff u is a solution of

(Su—Tu—w,v—u)> (r—s)|lu—v|”
when s < r, p > 1,r p-monotone constant and s p-Lip constant.

Let K be a nonempty closed convex subset of a reflexive Banach space X, S,7 : K — X*, f: X —
[—o0,00] is convex, Isc and f # eo. Let S be hemicontinuous, strong monotone with constant r > 0, T

hemicontinuous and relaxed Lip with constant k.
Theorem 3.3. Under the above conditions
(Su—Tu,v—u)+ f(v)—f(u) >0VveK
= (Sv—=Tv,v—u)+ f(v)— f(u) >c|v—ul?
where c =r—k > 0.
Theorem 3.4. Under the above conditions
(Su—Tu,v—u)+ f(v)—f(u) >0
has a unique solution.
Let X be Ic H-tvs, G : X — X is continuous, 7 is said to be G-monotone if 3 a constant » > 0 such that
(Tu—Tv,G(u—v)) > r(p(u—v))2

where p is a seminorm on X.



Journal of Orissa Mathematical Society 95

Theorem 3.5. Let K be a nonempty, compact, convex subset of X, T : K — X* is strongly G-monotone,

Gu+v)=Gu)+G®v), G(tx) =tG(x). Then

(Tu,G(v—u)) >0Vvek
has a solution.

A set K C R" is said to invex if
uveK,0<r<l=u+mvu) ek

for some vector 1 : K x K — R. 11 : K x K — R is said to be strongly monotone if 3 ¢ > 0 such that

(n(vu),v—u) > o |lv—ul?
Lip continuous if 3 a constant § > 0 such that

M (x| < & flv—ull.

Assumption 1. 1 (v,u) = —n(u,v).
Assumption 2. y=E84+BV1-20+82<a, a>0,0 >0, B >0,8 >0 are strong monotone an

Lip constants of T and 1 respectively, & > 0 is the Lip constant of A.

Theorem 3.6. T : K — R, 1 : K X K — R are both strongly monotone and Lip continuous, A : K — R

Lip continuous. Assumption 1 and 2 hold. Then 3 a unique solution of the variational inequality
ueK:(Tu—Au,n(v,u)) >0Vvek.

Definition 3.7. Let 7 : K — X*. T is said to be

Uniformly Monotone if 3 a gauge function ¢ (r) such that

(Tx=Ty,x—y) =1 (= yll) e =l
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Strongly Monotone if 3 a constant ¢; > 0 such that

2
(Tx—=Ty,x—y)>ci|lx—y[".

Uniformly Relaxed Lipschitz if 3 a gauge function ¢;(r) such that

(Tx=Ty,x—y) <cr(x =yl [lx=yI-

Relaxed Lipschitz if 3 a constant ¢, > 0 such that

(Tx—Ty,x—y) <calx—y|.
p-Monotone if 3 a constant » > 0 such that
(Tx=Ty,x—y) =rllx—y||".

p-Lipschitz type if 3a s > 0 and p > 1 such that

(Tx—Ty,x—y) <s|x—y|".

Relaxed Monotone if 3 a constant k > 0 such that

(Tx—Ty,x—y) > —k|x—y|[*.

Strongly Lip is (7x — Ty,x—y) < —c[lx—y|*.

Strongly Pseudo-contractive or Strictly Pseudo-contractive :

Ft> 1 =yl < (T +r) (e —y) = rt(Tx=Ty)||.

Strictly accretive for r > 0 such that

2
(Tx—Ty,x—y)>rllx—y|".

Remarks:



Journal of Orissa Mathematical Society 97

(1) T Relaxed Lip < —T Relaxed Monotone

(2) T Relaxed Lip &
I—T is strongly monotone, ifk < 1;

I —T is relaxed monotone, ifk > 1.

(3) T strongly monotone <> I — T is strongly (strictly) contractive.

(4) T strongly Lip < I —T is strongly monotone.
4 Equilibrium Problem

There is another problem, called ‘equilibrium problem’, which is even more general than variational
inequality. For a brief discussion of equilibrium problem one may refer, for example, Blum and Oettli.
We quote below the problem and then mention some problems which arise as special cases.

Let X be a real Banach space and K a closed convex subset of X. Let f: K x K — R be such that
flx,x)=0forVxeKk.

The equilibrium problem (P) is to find

x €K, f(x,y) >20Vy€eK.

Examples 1. Optimization: Let g : K — R. Find xo € K such that

8(xo) = ming(x).

This is a special case of (P), the case for which f(x,y) = g(y) — g(x).

2. Convex Optimization for differentiable map and variational inequality:

Let g : X — R be convex and Gateaux differentiable with Gateaux differential Dg(x) € X* at x. Consider
the problem min,cx g(x). If xo solves the above problem, it is known that x is a solution of the following
VI

x0 € K, (Dg(x0),y—x0) >0Vy€K.
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Observe that the above is a special case of the problem (P) with f(x,y) = (Dg(x),y —x).
3. Fixed Points:
Let X be a Hilbert space, T : K — K. Find xp € K such that Txy = xo. Put f(x,y) = (T (x) —x,y — x).

Then the above problem is the problem (P).
5 Complimentary Problem

Several problems arising in various fields such as: mathematical problem, game theory, economics,

mechanics and geometry have mathematical formulation of a complementarity problem.

Definition 5.1. Let X be a reflective real Banach space and let X* be its dual. Let K be a closed convex

cone in X with O € K. The polar of K is the cone K* defined by
K'={yeX":(yx) >0VxeK}.

Obviously K* # @ since 0 € K*. It is also easy to see that K* is a closed convex cone in X*. Let T be

a map from K into X*. Then the complementarity problem (CP in short) is to find an x € X such that
xe€K,Txe K*,(Tx,x) =0.

The following theorem proves the equivalence between the complementarity problem and variational

inequality over closed convex cone. We write
S(T,K)={x:x€K,(Tx,y—x) >0forally € K}

and
C(T,K)={x:xeK,Txe K*,(Tx,x) =0}.

‘We have

Theorem 5.2. Karamardian [57|]

C(T,K) = S(T,K).
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Remarks:

(a) Tt should be noted that the solution of a complementarity problem, if exists, is unique if the operator
is strictly monotone. Since C(T,K) = S(T,K) for a closed convex cone K, the proof is same as that

of Theorem [2.6]

(b) Regarding the existence it must be noted that the solution may not exist only under the assumption
of hemicontinuity and monotonicity (even strict monotonicity) of the operator 7. For example, let

X=R,K={xeR:x>0}, so that K = K* and K is a closed convex cone. Let T : K — R be

defined by
1
Tx=— .
I4+x
Then T is hemicontinuous and strictly monotone (7x,x) = 0 impliesx =0but 70 = —1 ¢ K*.

We shall now discuss the existence of solutions of the complementarity problem. We have

Theorem 5.3. Let T : K — X* be hemicontinuous, monotone and coercive. Then the complementarity
problem has a solution. In particular if T is hemicontinuous and o.-monotone, then the solution exists

and is unique.

Theorem 5.4. Let T : K — X* be hemicontinuous, monotone and let TO € K*. The the complementarity

problem has a solution.

Theorem 5.5. Let T : K — X* be hemicontinuous and monotone such that there is an x € K with

Tx € int K*. Then there is an xq such that

xo €K, Txy € K* and (Txp,xp) = 0. 5.1

If further T is strictly monotone, then there is a unique xy satisfying (5.1).

In order to prove the theorem we need the following result, which is due Browder, See Browder [[12]]

and Mosco [74]].
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Theorem 5.6. Let T be a monotone, hemicontinuous map of a closed, convex bounded subset K of X,

with 0 € K, into X*. Then there is an xo € K such that
(Txp,y—x0) >0forally € K.

Now observe that if e € K* but e ¢ int K*, the sets D,(e) need not be bounded. In this case we cannot
conclude that y = 0 from the fact that (e,y) = 0. Consider the case when X = R?, K = R? and e = (1,0).
Then for each r > 0, D,(e) contains the positive y-axis and hence is unbounded.

We note that this theorem fails to hold if the requirement that there exists x € K with Tx € int K* is
dropped.

Take X =R3, K = {(x,y,z) eR3:x,2>0, 2xz Zyz}. Define T by T'(x,y,z) = (x+ 1,y+1,0). Then
T is monotone, hemicontinuous (even bounded). (1,—1,1) € K and T(1,—1,1) = (2,0,0) € K*. If
u=(x,y,z) € K with Tu € K*, then y = —1 and hence x > 0. Hence for any such u, (Tu,u) =x(x+1) > 0.

Theorem@]appears, in, some form and other Browder [9]], Mosco [74] and Hartman and Stampacchia
[44]]. The papers were written almost at the same time and there are some overlapping results contained

in those papers.
Finite Dimensional Case

Let K be a closed convex cone in R” and f a map from K into R” such that
x€K, f(x) e K", (f(x,x))=0.
In particular, if K = R",
{x=(x1,x2,---,xp) €ER":x;, >0, i=1,2,--- ,n},
then the particular problem can be stated as follows:

20, (1) 20, ((x),x) = ix,ﬂxi) —o0.
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If further f(x) = Mx-+ b where M is a given real square matrix of order n and b is a given column vector
in R", then the above problem is called linear complementarity problem (LCP in short) and it can be
stated as follows:

Find wy,ws, - ,w, and (x,x2,--- ,x,) such that
W:Mx+b, WZO’XZO7 Wlxl:07 i: 1’2’... 7n'

Otherwise, in general, the problem is known as a nonlinear complementarity problem (NCP in short).

We shall now illustrate the LCP by a numerical example.

An Example

As a specific example of an LCP in R", let
2 1 -5
n=2 M= , 4= .
1 2 —6
In this case the problem is to solve

Wi —2X1 — Xy = -5
Wy — X1 —2)62 =-6

wi,w2,Xx1,Xx2 > 0, wixy = waxy = 0.

This can be expressed in the form of vector equation as:

<)o (1) e(5) = (5)-(5)

Wi, w2, x1,%2 > 0, wixp = waxy = 0.
As special cases we have the following results for R".

Theorem 5.7. Let f : K — R" be continuous, monotone, then NCP has a solution. In particular if f is

continuous and strongly monotone , then the solution exists uniquely.
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Theorem 5.8. Let f: K — R" be continuous, monotone and such that f(0) € K* (or f(0) =0). Then

there exists a solution to the NCP.

Theorem 5.9. Let f : K — R" be continuous, monotone and such that there exists an x € K with f(x) €

int K*. Then there exists a solution to the NCP.

Lemke [63] and Eaves [27] discussed the existence of stationary points and nature of the set of all
stationary points of the pair (f,K) in R” where K = R”,. Lemke [63] discussed the linear case by

considering affine function. A basic theorem of Lemke [64] states as follows:

Theorem 5.10 (Lemke). Given an affine map f : R’} — R" and a d € R’ there is a piecewise affine

map x : Ry — R such that x(t) is a stationary point of (f,D}) with
d-x(t) =t where
D} ={xeR}:d-x<1}.
There are several matrices used in LCP.

Definition 5.11. Let M be square matrix of order n. M is said to positive definite if

n n
yiMy = Z Zyl-Mijyj >0 forall0#£yeR".
i=1j=1

Positive semi-definite if

yI'My >0 forall y € R".

Copositive Matrix if
yI'My > 0 for all y > 0 and strictly copositive if strictly inequality holds for all y > 0.

Copositive plus Matrix if it is copositive matrix and if
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yI (M +MT) =0, whenever y > 0 satisfies y' My = 0.

P-matrix if all the principal subdeterminants of M are positive.

Q-matrix if the LCP has a solution for every g € R".

nondegenerate matrix if all the principal subdeterminants are nonzero.

degenerate if it is not nondegenerate.

z-matrix if m;; < 0 for all i # j

J-matrix if

Mz>0,7IMz>0,z>0,=z=0.
6 Semi Inner-Product Space and Variational Inequality

In this section we discuss the concept of semi-inner product (sip in short), which was introduced by
Lumer [68] in the year 1961 and subsequently studied by Giles [38] and several other mathematicians.
We then study variational inequality in sip space.

Let V be a complex vector space. A sip on V is a function [, ] on V x V with the following properties:

for x,y,z€Vand A € C,

(i) ety =[xz + [y,
[Ax,y] = A[x,y],

(if) [x,x] >0 forx#0,
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(iid) [xp]7 < o] ],

V along with a sip defined on it is called a sip space. A sip space has the homogeneity property when the

sip satisfies
(iv) [x,Ay] = A[x.y].

With the aim of carrying over Hilbert space type arguments to the theory of Banach spaces Lumer [68]
introduced the concept of sip. But the generality of the axiom system defining the sip is a serious
limitation of any extensive development of a theory of sip spaces parallel to the theory of inner-product
spaces. Let X be a normed linear space and let X* be its dual.

The unit ball of X is

U={xeX:|x| <1} and its boundary

S={xeX :|x|| =1} is the unit sphere of X.

U*={feX":|f]| <1} and its boundary

S*={feX:|f|ll=1} is the unit sphere of X*.

The conjugate norm will also be denoted by || , ||

1/2

Theorem 6.1. A sip space V is a normed linear space with the norm ||x|| = [x,x]'/=. Every normed linear

space can be made into a sip space (in general, in infinitely many different ways) with the homogeneity

property.

Theorem 6.2. A Hilbert space H can be made into a sip space in a unique way. A sip space is an ip

space if and only if the norm it induces satisfies parallelogram law.
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Continuous and Uniform sip spaces

A continuous sip space is sip space V where the sip has the additional property:

(v) Forall (x,y) € Sx S,

Re[y,x+ Ay] — Re[y,x| forall L — 0.

The space is a uniformly continuous sip space when the above limit is approached uniformly for all
(x,y) € SxS.

A uniform sip space is a uniformly continuous sip space where the induced normed linear space is

uniformly continuous and complete.

Examples (L, space for 1 < p < )

The real Banach space L,(X,S, ), where 1 < p < oo, can readily be expressed as a uniform sip space

with sip defined by

1 _
pfz/xy\x\p 'senx du.

I;Y,X} =

[l
For x,y in any sip space V, x is said to be normal to y and y is transversal to x if [y,x] = 0. A vector x € V
is normal to a subspace N and N is transversal to x, if x is normal to each y € N.
A Banach space X is said to be smooth at a point x € S if and only if there exists a unique hyperplane
of support of x, that is, there exists only one continuous linear functional I, € E* with ||I;|| = 1 and
I:(x) = 1. x is said to be a smooth Banach space if it is smooth at every x € S.

The norm of X is said to be Gateaux differentiable if for all x,y € S and real A,

ek Ay

exists.
A—0 A

The norm is said to be uniformly Frechet differentiable if this limit is approached uniformly for (x,y) €

S x §. Note that X is smooth at x € S if and only if the norm is Gateaux differentiable at x. We have

Theorem 6.3. In a continuous sip space, x is normal to y if and only if |x+ Ay|| > ||x|| for all complex

numbers A.
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Theorem 6.4. A sip space is continuous (uniformly continuous) sip space iff the norm is Gateaux

(uniformly Frechet) differentiable.

Lemma 6.5. In a continuous sip space which is uniformly convex and complete in its norm, there exists

a nonzero vector normal to every proper closed vector subspace.

Lemma 6.6. A sip space is strictly convex if whenever [x,y| = ||x|| [|y||, x,y # O, then y = Ax for some

real L > 0.

Theorem 6.7 (Generalized Riesz-Fischer Theorem). In a continuous sip space V which is uniformly
convex and complete in its norm, to every continuous linear functional f € V*, there exists a unique

vector'y € V such that

f(x) =[xy, xeV.

Theorem 6.8. For a uniform sip space M, the dual space M* is a uniform sip space w.r.t. the sip defined
by

I_fx~fyj = [yax]'
Theorem 6.9. Every finite dimensional strictly convex, continuous sip space is a uniform sip space.

Theorem 6.10. Letr X be a continuous sips which is uniformly convex and complete in its norm. If A is a

bounded linear operator from X into itself, then there is a unique bounded linear operator A" such that
[Ax,y] = [x,ATy].

AT is called the generalized adjoint of A: The proof uses Theorem and is similar to that of the
corresponding for Hilbert space operators. Note that if X is a Hilbert space, then the generalized adjoint
is the usual Hilbert space adjoint.

We now discuss variational inequality and complementarity problem in semi-inner-product space un-

der certain contractive type conditions on the operators.
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Let K be a closed convex subset of sips. If T : K — K, then a variational inequality (VI in short) is
stated as follows:

x€K: [Tx,y—x]>0forally € K.

If K is closed convex cone, then the polar or dual of K, denoted by K™, is defined by
Kt ={zeX":[zx] >0forallxe K}.
If K is a closed convex cone, then the complementarity problem (CP for short) is defined as follows:
x€K,Tx€ K" and [Tx,x] = 0.

Observe that if K is a closed convex cone, then (VI) and (CP) are equivalent.

We have

Theorem 6.11. Let X be uc and ss and K a nonempty closed convex subset of X. Let T : K — K satisfy

any one of the following conditions:

() I Tx=Tyl| <allx—yll+b[|Tx—y[| +c||Ty V|
where

—1<a<0,b>0,c>0,a+b+c=0,

(ii) | Tx=Ty|| <arllx—yll+azlx—Tx||+a3lly—Tyl| +as |x—Tx|| +as |y — Tx]|
where
5
—1<a<0,ay,a3,a4,a5 > O,Zai =0.
i=1

Then there is a unique yo € K such that [Tyy,x — yo| > 0 for all x € K.

Theorem 6.12. Let X be Hilbert space and K a closed convex cone and let the conditions of the previous

theorem be satisfied. Then the CP has a unique solution, i.e., there is a unique yo € X such that

yo € K, Tyo € K* and (Tyg,yo) = 0.
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Theorem 6.13. Let X be uc and ss and K a nonempty closed convex subset of X. Let T : K — K be

nonexpansive. Then there exists some yg € K such that

[Tyo +y0,y0] = 0.
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