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Multi-Objective Chance-Constrained
Programming Problems Involving Some
Continuous Random Parameters

D. K. Mohanty,* M. P. Biswal! and S. Nanda*

Abstract

In real-life applications there are some situations where the Decision Maker (DM) wishes
to optimize multiple, and conflicting objective functions. This is known as Multi-Objective
Programming (MOP) Problem. Stochastic programming is a branch of mathematical pro-
gramming that deals with some situations in which an optimal decision is desired under
some random parameters. Chance Constrained Programming (CCP) technique is a very
popular approach to solve Stochastic Programming (SP) problems. This paper presents
some multi-objective CCP problems by considering all the right-hand side parameters of the
constraints as random variables. It is assumed that the random variables follow some con-
tinuous distributions such as Two-parameter exponential distribution, and Three-parameter
gamma distribution, and Power function distribution. In this paper, we first establish equiva-

lent deterministic models for multi-objective CCP problems, and then we apply &-constraint

*Indian Institute of Technology, Kharagpur - 721 302, India, Email: dkmohanty.iitkgp @ gmail.com
TIndian Institute of Technology, Kharagpur - 721 302, India, Email: mpbiswal @maths.iitkgp.ernet.in
¥KIIT Deemed to be University, Department of Mathematics, Bhuabaneswar, Odisha,751024, India, Email: snanda@kiit.ac.in



122 D. K. Mohanty, M. P. Biswal and S. Nanda

method, weighting method, and fuzzy programming method to solve the deterministic multi-
objective problems. Numerical examples are included to illustrate the solution procedures

of the models.

Keywords: Stochastic programming, Chance Constrained Programming, Two parameter exponential

distribution, Three parameter gamma distribution, Power function distribution

1 Introduction

In many concrete real life decision-making problems, a decision maker has to deal with the problems
having multiple, conflicting and non-commensurable objectives. This has given rise to the field of Multi-
Objective Programming (MOP). In case of multiple conflicting objectives, there does not exist any solu-
tion point which is optimal with respect to all objectives. So, we have to go for a compromise solution.
In a typical multi-objective optimization problem, there exists a set of solutions which are superior to
the rest of solutions in the search space when all objectives are considered but are inferior to other solu-
tions in the space with one or more objectives. These solutions are known as pareto-optimal solutions or
non-dominated solutions. The rest of the solutions are known as dominated solutions.

The above mentioned multi-objective optimization problem may involve some level of uncertainty
about the values to be assigned to the various parameters. If the uncertainty in the problem is random
in nature, then the problem is called Multi-Objective Stochastic Programming (MOSP) problem. The

mathematical model of a MOSP with K stochastic objective and m stochastic constraints is given by:

max Clo).x (1.1)
sub ject to (1.2)
A(w).x<b(w) (1.3)

xeR (1.4)
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where C is a random (K,n) matrix, A is a random (m,n) matrix and b is a random n-column vector defined

on some probability space.

Stochastic programming (SP) is concerned with the decision making problems in which some or all
parameters are treated as random variables in order to capture the uncertainty. SP is used in several real
world decision making areas such as energy management, financial modelling, supply chain and schedul-
ing, hydro thermal power production planning, transportation, agriculture, defence, environmental and
pollution control, production and control management, telecommunications, etc. Several models and
methodologies have been developed in the field of stochastic programming. In the literature, there exist
two very popular approaches to solve SP problems, namely,

(i) Chance constrained programming, and

(ii) Two-stage programming.

Chance constrained programming was developed as a means of describing constraints in mathematical
programming models in the form of probability levels of attainment. The chance constrained program-
ming (CCP) can be used to solve problems involving chance-constraints, i.e.constraints having violation
up to a pre-specified probability level. The use of chance-constraints was initially introduced by Charnes

and Cooper [4]].

Similarly, the two-stage programming technique was suggested by Dantzig [29] to solve the stochastic
programming problem. This technique also converts the stochastic problem into an equivalent determin-
istic problem. Unlike the chance constrained programming, the two stage programming does not allow

any constraint to be violated.

In the next Section, we have presented some literature available on multi-objective stochastic program-

ming. In rest of the paper, we discussed about our model and methodology.
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2 Literature Survey

In optimization, decision making problems under random uncertainty are modelled by using stochastic
programming approach. In the literature of the stochastic linear programming [1]], [2], [S)], various
models have been suggested by several researchers. Bibliographical review on this topic is covered by

Stancu and Wets [3]] and Infanger [5]].

In recent past, a wide range of studies have been done in the field of multi-objective stochastic pro-
gramming. There are several research articles in the literature dealing with such problems, among which
we could mention the books by Goicoechea et al.[6], Stancu-Minasian [7]], Slowinski and Teghem [8]].
Adeyefa and Luhandjula [9]] presented an up-to-date overview of how important ideas from optimiza-
tion, probability theory and multi-criteria decision analysis are interwoven to address situations where
several objective functions and the stochastic nature of data are considered in a linear optimization con-
text. Hulsurkar et al.[10] presented fuzzy programming approach to solve the multi-objective stochastic
linear programming (MOSLP) problem. Later, Sinha et al.[11] constructed the deterministic model of
the MOSLP problem with joint probabilistic constraint having right hand side parameters as independent
normal random variables. Sahoo and Biswal [12] presented a MOSLP model with joint probabilistic
constraints. They established the deterministic equivalents of the model by considering the random
variables as normal and log-normal random variables. Charles et al.[13]] presented the equivalent deter-
ministic form of the MOSLP with probabilistic constraints having different types of distributions like
Pareto distribution, Beta distribution of first kind, Weibull distribution and Burr type XII distribution.
Later, Abdelaziz [[14] presented a survey of various solution approaches for multi-objective stochastic
programming problems where random variables can be in both objectives and constraints parameters.

Franca et al.[[15] introduced a multi-objective stochastic supply chain model to evaluate trade-offs

between profit and quality. Felfel et al. [L6] proposed a multi-objective two-stage stochastic program-

ming model for a multi-site supply chain planning problem under demand uncertainty. Their proposed
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multi-objective model aimed simultaneously to minimize the expected total cost, to minimize the worst-
case cost, and to maximize the customer demand satisfaction level. Recently, Barik et al. [17] studied
stochastic programming problems involving Pareto distribution. In their paper they considered both
single-objective and multi-objective stochastic programming problems. They used both chance con-
strained programming and two-stage stochastic programming to solve these problems.

In the literature, there is no article on the multi-objective stochastic programming problem where some
parameters follow either Two-parameter exponential distribution, Three-parameter gamma distribution,
and Power function distribution. So, in this paper, we propose a solution procedure of a multi-objective
stochastic programming problem where the right hand side parameters follow either triangular distribu-

tion or trapezoidal distribution with known parameters.

3 Multi-Objective Chance Constrained Linear Programming Problems

In this Section, multi-objective Linear CCP problems involving Two-parameter exponential distribution,
Three-parameter gamma distribution, Power function distribution are considered. Further, we establish
equivalent deterministic models for multi-objective CCP problems, then we apply €-constraint method,
weighting method, and fuzzy programming method to solve the problems. The mathematical model of a

multi-objective chance constrained programming problem can be stated as:

n
max : zx = Z ckjxj, k=12,...,.K (3.5
j=1
subject to
n
Pr(Zaijxjgbi)Z(l—yi), i:1,2,...,m (36)
j=1
0<y <, i=1,2....m (3.7)

x>0, j=1,2...,n (3.8)
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where g;;, (i=1,2,...,m; j=1,2,...,n), are the constraint coefficients, ¢, (j=1,2,...,n);(k=1,2,...,K)
are the coefficients associated with the k-th objective function. In the model, only the right hand side
parameters b;, (i = 1,2,...,m) are considered as random variables which follow different continuous dis-

tributions with known mean and distribution.

3.1 Equivalent Deterministic Models of Multi-Objective Chance Constrained
Programming Problems

Case-I: b; follows Two-parameter exponential distribution

In this case, we assume that b;, (i = 1,2,...m) in the model (3.5)-(3.8)) are independent random variables
following two-parameter exponential distribution ([[19]) with parameters 6;, 0; where mean and variance

of random variable b; are given by:
E(bi):9i+6,-,i:1,2,..,m 3.9

Var(b;)) =67, i=1,2,...m (3.10)

The probability density function of the i-th two-parameter exponential variable b; is given by
1 —(b;—6;
f(bi)—exp((‘o’)>,i—1,2,..,m 3.11)
i

where b; > 6;, 6; > 0.
To solve the problem (3.5)-(3.8), we establish the deterministic form of the problem. Then from the

chance-constraint (3.6]), we have

Pr(Y aijx; <bi) > (1-7%)
=1

= Pr(b; > Zaijxj) > (1—=v%)
=1

= [T fndb > (1—)

L aijx;j
j=1

= jo if:xp(M)dbiZ(lfyi)

Y aijx; O; O;
Jj=1
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Integrating, we obtain

Y aijx; < 6i—oiln(1—7%) (3.12)
j=1

Using the above result in (3.6), we obtain equivalent deterministic model of (3.5)-(3.8) as follows:

max : gy = i ckjxj, k=12,..,K (3.13)
j=1
subject to

n
Y aijx; < 6;,—ailn(1-7) (3.14)
j=1
0<y <1, i=1,2....m (3.15)
x; >0, j=12...n (3.16)

The above model is a Multi-Objective Linear Programming (MOLP) model. Using a suitable technique
for MOLP technique, the model can be solved.

Case-11: b; follows Three-parameter gamma distribution

In this case, we assume that b;, (i = 1,2,...m) in the model (3.5)-(3.8)) are independent random vari-
ables following three-parameter gamma distribution ([20]]) with parameters o;, 8; and 6; where mean and

variance of random variable b; are given by:
E(bl): alﬁl+elal:17277m (317)

Var(bi) = a;?, i=1,2,...m (3.18)

The probability density function (pdf) of the i-th three-parameter gamma variable b; is given by

= ! Q)% —(bi=8)y . _
f(bi)—W(b,—Ol) exp< z ),1—1,2,....m (3.19)

where o; > 0,; > 0 and b; > 6;. It is further assumed that @; is a positive integer.

To solve the CCP problem (3.5)-(3.8)), we establish the deterministic model of the problem. In this case,
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right hand side parameters of the chance-constraints follow three-parameter gamma distribution. Then

from the chance-constraint (3.6)), we have

n

Pr(Y aijx; <bj) > (1—7)
=1

= Pr(b; > Zaijxj) >(1-%)
=1

00

= [, f(bi)db; > (1—7)

L aijx;
j=1
- 1 _ —(bi—6))
=[x o (bi — 6,)% ex (#>db~> 1—v
L aij¥j F(oc,-)[}l.“'( =) P Bi 1= (=)
=
Integrating, we obtain
n n
—( ‘21 aijxXj = 0i)\ /4 | ('21 aijxj = 6;)
j= j=
ex () | =0 (3.20)
P ( B ) (,;0 U ) (=
Using the above result in (3.6), we obtain equivalent deterministic model of (3.5)-(3.8) as follows:
n
max : Zp = CkjXj, k:1,2,...,K (321)
j=1
subject to
n n
—( Zl aijxj = 0i)\ /4 | (,Zlaijxj —6)
= j=
exp () ) z0-n (3.22)
() (B )=
0<y <1, i=1,2..,m (3.23)
x>0, j=1.2...n (3.24)

Case-III: b; follows Power function distribution

Power function distribution ([18]]) is a very popular random variable used to estimate the reliability and
hazard rates of a electrical component. Here we consider, b;, (i = 1,2,...m) in the model (3.5))-(3.8) are
independent random variables following power function distribution. The probability density function

(pdf) of the i-th random variable b;, (i =1,2,...,m) is given by:

G Bi—1
Bb it O<bi<oyBi>0
fbi) =19 o (3.25)

0, otherwise
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where oy, (i=1,2,...,m), and B;,, (i=1,2,...,m) are known as positive scale parameter ¢; and positive

shape parameter f3; respectively. The mean and variance of b; (i = 1,2,...,m) are given by:

E(b) = 1(:[3;3 i=1,2,..,m (3.26)
_ o Bi .
Var(b;)) = CEYAEYAL i=1,2,...,m, (3.27)

respectively.
To solve the problem (3.5)-(3.8)), we establish the deterministic form of the problem. Then from the

chance-constraint (3.6), we have

Za,]x,<b)2(1—y)

o
:>/ bi)db; > (1—7)
a,jxj

o i
:»/ ﬁ” b= (1= )
=1 &ijXj

Integrating, we obtain
n 1
Y ajxi<ayf, i=1,2,...m (3.28)
=1
Hence, the equivalent deterministic form of the model (3.5)-(3.8) is given by:

n
max:zo =Y cgx;, k=12,...K (3.29)
=1
subject to

n 1

Y oaxi <oy, i=12,..m (3.30)

j=1

0<y<l, i=12....m (3.31)

x; >0, j=12...n (3.32)

The above model is a Multi-Objective Linear Programming (MOLP) model. Using a suitable technique
for MOLP technique, the model can be solved.
In the next section, we will discuss some of the popular techniques used to solve Multi-Objective

Programming (MOP) problems.
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4 Solution Methodology for MOP Problem

MOP problems arise in every branch of science, engineering, and social science. Due to the conflicting
nature of the criteria, a unique feasible solution optimizing all the requirements does not exist. Two
different efficient solutions are characterized by the fact that each of them is better in one criterion but
worse in another. The primary goal of MOP is to seek suitable solutions and Pareto outcomes of multi-
objective programs and, if possible, support the Decision-Maker (DM) in choosing a final preferred
solution. Therefore, it is of interest to design methods for obtaining a complete or partial description of
the Pareto set and efficient set referred to as the solution sets.

Several methods have been developed for solving MOP problems. Some of the widely used efficient

methods are discussed in the following Subsections.

4.1 e-Constraint Method

The &-constraint method was developed by Haimes [22]. It is used to generate the Pareto optimal so-
lutions for MOP problems. It It makes use of a single-objective optimizer which handles constraints,
to generate one point of the Pareto front at a time. For transforming the MOP problem into several
single-objective problems with constraints it uses the following procedure:

Step-1: Optimize one of the objective functions (i.e. zx(X),k = 1) considering the other objective

functions as constraints, incorporating them in the constraint part of the model as shown below:

n
max : 71 (x) = Y clx; (4.33)
j=1
subject to
n
a) =Y x> e (k=2,... K),k#1 (4.34)
j=1
n
Zaijxjgbi,(i:I,Z,...,m) (435)

Jj=1
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X >0,(j=12,...,n) (4.36)

where & € R is the minimum tolerable objective level. The value of g is chosen for which the formulated
objective constraints in the above model are binding at the optimal solution.

Step-2: Solve the remaining (K — 1) number of objective functions w. 1. t. the constraints separately
and find the ranges of each objective functions.

Step-3: Using the ranges of each objective function, the value of the &, (k =2,3,...,K) are assigned
by the decision maker to find the Pareto optimal solution of the formulated single objective mathematical
programming model.

Step-4: Continue the process with the remaining objective functions for finding the suitable Pareto

optimal solution.

4.2 Weighting Method

The most widely used method for solving MOP problems is the weighting method. It has been proposed
by Zadeh [21]. This method transforms multiple objective functions into a single objective function,
by multiplying each objective function by a weighting factor, and summing up all weighted objective
functions. This method generates non-dominated solutions by parametrically varying weights. It is
assumed that the objective functions are measured in the same unit. If the objective functions are not in

the same unit, it can be transformed into the same unit before applying the method.

Mathematically, the weighting method can be stated as follows:

K
max :z= Z Wiz (x) 4.37)
k=1
subject to
K
Y wi=1,w>0,(k=1,2,3,...,K) (4.38)

k=1

xes (4.39)
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where S is the feasible region of the multi-objective optimization problem. The coefficient wy operating
on the k-th objective function zg, is called a weight and can be interpreted as the relative weight of that

objective function when compared to the other objective functions.

4.3 Fuzzy Programming Method

Fuzzy Programming approach is an important tool for solving Multi-Objective Programming (MOP)
Problems. This technique gives compromise solution of the MOP problem. Fuzzy set theory was first
introduced by Zadeh [23]]. Later on, Zimmermann [24]] used a fuzzy set theory concept with a suitable
choice of membership function and derived a fuzzy linear program, which is identical to the present-day
max-min problem. Steps of the fuzzy programming technique are as follows:

Step-1: Select the first objective function (i.e. zx,k = 1) and solve it as a single objective optimization
problem subject to the given constraints. Let x(!) be the ideal solution. Then select the second objective
function and find the ideal solution as x(?), continue the process K number of times for K different
objective functions. Let x(l),x(z) yeen ,x<K ) be the ideal solutions for the objective functions z1, 22, ..., Z
respectively.

Step-2: Evaluate all these objective functions at all these ideal solutions and formulate a pay-off matrix

(Table[T) of size K x K as follows.

Table 1: Pay-Off Matrix

z1(x) () ... zx(x)
Dl oz oz o ik
XDz oz o 2k
x|z ke ... kK

Step-3: From the pay-off matrix (Table 1)) determine the bounds for k-th objective function z(x), (k =

1,2,...,K). If an objective function is of maximization type find the best upper bound U;" and worst
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lower bound /, . If an objective function is of minimization type find the best lower bound /; and worst

upper bound u, , (k=1,2,...,K).

Step-4: Associate a linear membership function i, (x) to the k-th objective function zi(x) as:

17 lf Zk(x) Z uz
L, (x) = Zﬁf{)_;;l" ;o ifl <zmx) <up,  (k=1,2,3,...,K) (4.40)
07 lf Zk(x) < l/:
H
1

<k

Figure 1: Membership Function of a Vector Maximization Problem

1) lek(X)Sl;;
o) =S S i <a() <up, (k=123...K) (4.41)

0, if (x) >

A
Lz,

1

0 -

L; Ue

Figure 2: Membership Function of a Vector Minimization Problem
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Step-5: (a) Use max-min operator with an augmented variable A and formulate a single objective crisp

optimization problem as:

max : A (4.42)

subject to
A<p,(x), (k=1,2,3,...,K) (4.43)
xeS (4.44)

where S is the feasible region of the optimization model.
(b) Similarly, if we use min-max operator with an augmented variable A, a single objective crisp

optimization problem can be formulated as:

min : A (4.45)

subject to
A >, (x), (k=1,2,3,...,K) (4.46)
x€S (4.47)

where S is the feasible region of the optimization model.
Step-6: Solve the crisp model by using a suitable mathematical programming technique to find an op-
timal compromise solution x*. Then evaluate all the objective functions at the optimal compromise

solution x*.

If the weights of multiple objective functions are interpreted as the relative preference of some DM,
then the solution is equivalent to the best compromise solution i.e. the optimal solution relative to a
particular preference structure. Also the optimal solution to the problem is a non-dominated solution

provided all the weights are positive.
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5 Numerical Examples

Here, we consider a Multi-objective CCP problem where the right hand side parameters of the constraints
follow two-parameter exponential distribution. We first obain the deterministic equivalent of the prob-
lem, then we solve the obtained deterministic Multi-objective CCP problem using €-constraint method,

weighting method, and fuzzy programming method.

Example-1: Solution by e-constrained Method:

max :z1 = S5x1+8xy + 7x3 (5.48)
max :zp = 2x1 +3x + x3 (5.49)
subject to
Pr(2x1 +6xp +5x3 < bl) >0.99 (5.50)
Pr(5x; 4+ 11xy +4x3 < by) > 0.95 (5.51)
Pr(4x; +5x; +x3 < b3) >0.90 (5.52)
x; >0, j=1.273 (5.53)

Here, we assume that b; (i = 1,2,3) are random variables following two parameter exponential distribu-
tion with following parameters:

E(by) =161,E(by) = 144,E(b3) = 106 and

Var(by) = 25,Var(b,) = 36,Var(bs) = 64.

Using and (3.10), the parameters are calculated as follows:

91 = 156,61 =5, 92 = 138,62 =6, 93 = 98 and O3 = 8.
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Now, using (3.13)-(3.16)), the equivalent deterministic model of (5.48])-(5.53) can be formulated as

follows:

max :z1 = 5x1+8xy + 7x3 (5.54)
max :zp = 2x1 +3x2 +x3 (5.55)
subject to
2x1 + 6xp + 5x3 < 156.05 (5.56)
5x1 + 11xp +4x3 < 138.308 (5.57)
dxi + 5x0 +x3 < 98.4103 (5.58)
x; >0, j=12.3 (5.59)

To obtain the Pareto optimal solution, we have applied e-constrained method. Thus, ideal solutions

are obtained as

max z; =227.1846,  x; =3.961176,x, = 0,x3 = 29.62553

max zp = 51.98608 x1 =23.2121,xp = 0,x3 = 5.561864

Using the ideal solutions we can find the lower bound L; and upper bound U; of the function Z;,i =1,2.
L1 =154.993584 < z; < 227.1864 = U; and Ly = 37.547882 < 7o < 51.98608 = U, i.e, 154.993584 <
€1 < 227.1864 and 37.547882 < & < 51.98608. Considering €, and &, as defined in the intervals, two

different LP problems are formulated as follows:

() max z; = 5x;+8xy+ 7x3,
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subject to
2x1+3x+x3 > &,
2x1+6xy+5x3 < 156.05,
Sxi+11xy+4x3 < 138.308,
4x1+5x+x3 < 98.4103,
X1,X2,X3 2 0.
) max z;= 2x;+43x; +x3,
subject to

Sx1+8xy+7x3 > €,
2x1+6xy+5x3 < 156.05

Sxi 4+ 11xp +4x3 138.308

IN

4x1 4+ 5x0 +x3 98.4103

IA

X1,X2,X3 > 0.

We solved the problem by using LINGO 11.0, and the obtained solution is presented in the Table [2]

and Table

Example-2:Solution by Weighting method:

Now, we solve the deterministic MO problem (5.54)-(5.59) using weighted sum method. Thus, the

problem becomes,

max 7" = wy(5x1 +8x2 + 7x3) + wa(2x1 +3x2 +x3),
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Table 2: Pareto-optimal solution of problem (I)

X1 X2 X3 & Z;
3.961176 0 29.62553 37.5 227.1864
7.230667 0 25.53867 40 214.9240
9.98733 0 22.20533 42 204.9240
13.59067 0 17.58867 44.77 191.0740
17.89733 0 12.20533 48 174.9240
23.2040 0 5.5720 51.98 155.0240
Table 3: Pareto-optimal solution of problem (II)
X1 X2 X3 € Z
23.21175 0 5.561106 154.99 51.98592
21.87707 0 7.230667 160 50.9848
16.54373 0 13.89733 180 46.9848
13.61040 0 17.5640 191 44.7848
8.543733 0 23.89733 210 40.9848
3.9624 0 29.624 227.18 37.5488
subject to

2x14+6x, +5x3 < 156.05
Sxi+11xp +4x3 < 138.308
dx1+5x+x3 < 98.4103
wit+wy, = 1

x1,x,x3 > 0.

We solved the problem by using Lingo software [30] and present the solution in the Table 4]

Example-3: Solution by Fuzzy Programming Method:

We solve the detereministic MO problem (5.54)-(5.59)using Fuzzy Programming Method.
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Table 4: Pareto-optimal solution

139

wy | wp 2 &) Decision variable 7

0.1 | 0.9 | 154.9936 | 51.98608 | x; =23.2121,x, =0,x3 =5.561864 | 62.28683

0.2 | 0.8 | 227.1864 | 37.54788 | x;y = 3.961176,x, = 0,x3 113.4026
29.62553

0.5 0.5 | 227.1864 | 37.54788 | x; = 3.961176,x», = 0,x3 132.3662
29.62553

0.6 | 0.4 | 227.1864 | 37.54788 | x; = 3.961176,x, = 0,x3 151.3299
29.62553

0.9 | 0.1 | 227.1864 | 37.54788 | x; = 3.961176,x, = 0,x3 208.2203
29.62553

Here, ideal solution of the problem is obtained as:

Evaluating all these objective functions at all a pay-off matrix is formulated as: using Fuzzy linear

max

max

21 = 227.1846,

72 = 51.98608

Table 5: Pay-off Matrix

z1(x) 22(x)

x| 2271846  37.547882

x| 154.993584  51.98608

membership functions and max-min operator, we have

max : A

x1 =3.961176,x2 = 0,x3 = 29.62553

x1 =23.2121,x = 0,x3 = 5.561864
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subject to
5x1 4 8xy + 7x3 + (227.1864 — 154.993504) A4 > 227.1864 (5.61)
2x1 + 3x2 +x3 + (51.98608 — 37.547882)A > 51.98608 (5.62)
2x1 4 6x2 + 5x3 < 156.05 (5.63)
Sx1 4 11xp 4+ 4x3 < 138.308 (5.64)
4x1 4+ 5x +x3 <98.4103 (5.65)
x>0, , j=123 1>0 (5.66)

The above model is solved using LINGO(11.0), and the compromise solution is obtained as follows:

A = 0.50000062, x; = 13.5865,x, = 0,x3 = 17.59385, z; = 191.0895, 7, = 44.76668

6 Conclusions

In this paper, we consider a multi-objective stochastic linear programming problem where some chance-
constraints are involved. In these chance-constraints, the right hand side parameters are considered as
random variables. By considering the fact that the random variables follows Two-parameter exponential
distribution, Three-parameter gamma distribution, and Power function distribution with known param-
eters, we establish the equivalent deterministic form of the chance-constraints. Fuzzy programming
technique is used to solve the multi-objective deterministic models. It will be interesting to study the
chance-constraint problem with technological coefficients and cost coefficients as Two-parameter ex-
ponential distribution, Three-parameter gamma distribution, and Power function distribution. We can
apply the result of this study in portfolio optimization. The study can be extended for nonlinear chance-

constrained problem and in hierarchical decision making framework
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