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Multi-Objective Chance-Constrained
Programming Problems Involving Some

Continuous Random Parameters

D. K. Mohanty,∗M. P. Biswal†, and S. Nanda‡

Abstract

In real-life applications there are some situations where the Decision Maker (DM) wishes

to optimize multiple, and conflicting objective functions. This is known as Multi-Objective

Programming (MOP) Problem. Stochastic programming is a branch of mathematical pro-

gramming that deals with some situations in which an optimal decision is desired under

some random parameters. Chance Constrained Programming (CCP) technique is a very

popular approach to solve Stochastic Programming (SP) problems. This paper presents

some multi-objective CCP problems by considering all the right-hand side parameters of the

constraints as random variables. It is assumed that the random variables follow some con-

tinuous distributions such as Two-parameter exponential distribution, and Three-parameter

gamma distribution, and Power function distribution. In this paper, we first establish equiva-

lent deterministic models for multi-objective CCP problems, and then we apply ε-constraint
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method, weighting method, and fuzzy programming method to solve the deterministic multi-

objective problems. Numerical examples are included to illustrate the solution procedures

of the models.

Keywords: Stochastic programming, Chance Constrained Programming, Two parameter exponential

distribution, Three parameter gamma distribution, Power function distribution

1 Introduction

In many concrete real life decision-making problems, a decision maker has to deal with the problems

having multiple, conflicting and non-commensurable objectives. This has given rise to the field of Multi-

Objective Programming (MOP). In case of multiple conflicting objectives, there does not exist any solu-

tion point which is optimal with respect to all objectives. So, we have to go for a compromise solution.

In a typical multi-objective optimization problem, there exists a set of solutions which are superior to

the rest of solutions in the search space when all objectives are considered but are inferior to other solu-

tions in the space with one or more objectives. These solutions are known as pareto-optimal solutions or

non-dominated solutions. The rest of the solutions are known as dominated solutions.

The above mentioned multi-objective optimization problem may involve some level of uncertainty

about the values to be assigned to the various parameters. If the uncertainty in the problem is random

in nature, then the problem is called Multi-Objective Stochastic Programming (MOSP) problem. The

mathematical model of a MOSP with K stochastic objective and m stochastic constraints is given by:

max C(ω).x (1.1)

sub ject to (1.2)

A(ω).x≤ b(ω) (1.3)

x ∈ R (1.4)
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where C is a random (K,n) matrix, A is a random (m,n) matrix and b is a random n-column vector defined

on some probability space.

Stochastic programming (SP) is concerned with the decision making problems in which some or all

parameters are treated as random variables in order to capture the uncertainty. SP is used in several real

world decision making areas such as energy management, financial modelling, supply chain and schedul-

ing, hydro thermal power production planning, transportation, agriculture, defence, environmental and

pollution control, production and control management, telecommunications, etc. Several models and

methodologies have been developed in the field of stochastic programming. In the literature, there exist

two very popular approaches to solve SP problems, namely,

(i) Chance constrained programming, and

(ii) Two-stage programming.

Chance constrained programming was developed as a means of describing constraints in mathematical

programming models in the form of probability levels of attainment. The chance constrained program-

ming (CCP) can be used to solve problems involving chance-constraints, i.e.constraints having violation

up to a pre-specified probability level. The use of chance-constraints was initially introduced by Charnes

and Cooper [4].

Similarly, the two-stage programming technique was suggested by Dantzig [29] to solve the stochastic

programming problem. This technique also converts the stochastic problem into an equivalent determin-

istic problem. Unlike the chance constrained programming, the two stage programming does not allow

any constraint to be violated.

In the next Section, we have presented some literature available on multi-objective stochastic program-

ming. In rest of the paper, we discussed about our model and methodology.
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2 Literature Survey

In optimization, decision making problems under random uncertainty are modelled by using stochastic

programming approach. In the literature of the stochastic linear programming [1], [2], [5], various

models have been suggested by several researchers. Bibliographical review on this topic is covered by

Stancu and Wets [3] and Infanger [5].

In recent past, a wide range of studies have been done in the field of multi-objective stochastic pro-

gramming. There are several research articles in the literature dealing with such problems, among which

we could mention the books by Goicoechea et al.[6], Stancu-Minasian [7], Slowinski and Teghem [8].

Adeyefa and Luhandjula [9] presented an up-to-date overview of how important ideas from optimiza-

tion, probability theory and multi-criteria decision analysis are interwoven to address situations where

several objective functions and the stochastic nature of data are considered in a linear optimization con-

text. Hulsurkar et al.[10] presented fuzzy programming approach to solve the multi-objective stochastic

linear programming (MOSLP) problem. Later, Sinha et al.[11] constructed the deterministic model of

the MOSLP problem with joint probabilistic constraint having right hand side parameters as independent

normal random variables. Sahoo and Biswal [12] presented a MOSLP model with joint probabilistic

constraints. They established the deterministic equivalents of the model by considering the random

variables as normal and log-normal random variables. Charles et al.[13] presented the equivalent deter-

ministic form of the MOSLP with probabilistic constraints having different types of distributions like

Pareto distribution, Beta distribution of first kind, Weibull distribution and Burr type XII distribution.

Later, Abdelaziz [14] presented a survey of various solution approaches for multi-objective stochastic

programming problems where random variables can be in both objectives and constraints parameters.

Franca et al.[15] introduced a multi-objective stochastic supply chain model to evaluate trade-offs

between profit and quality. Felfel et al. [16] proposed a multi-objective two-stage stochastic program-

ming model for a multi-site supply chain planning problem under demand uncertainty. Their proposed
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multi-objective model aimed simultaneously to minimize the expected total cost, to minimize the worst-

case cost, and to maximize the customer demand satisfaction level. Recently, Barik et al. [17] studied

stochastic programming problems involving Pareto distribution. In their paper they considered both

single-objective and multi-objective stochastic programming problems. They used both chance con-

strained programming and two-stage stochastic programming to solve these problems.

In the literature, there is no article on the multi-objective stochastic programming problem where some

parameters follow either Two-parameter exponential distribution, Three-parameter gamma distribution,

and Power function distribution. So, in this paper, we propose a solution procedure of a multi-objective

stochastic programming problem where the right hand side parameters follow either triangular distribu-

tion or trapezoidal distribution with known parameters.

3 Multi-Objective Chance Constrained Linear Programming Problems

In this Section, multi-objective Linear CCP problems involving Two-parameter exponential distribution,

Three-parameter gamma distribution, Power function distribution are considered. Further, we establish

equivalent deterministic models for multi-objective CCP problems, then we apply ε-constraint method,

weighting method, and fuzzy programming method to solve the problems. The mathematical model of a

multi-objective chance constrained programming problem can be stated as:

max : zk =
n

∑
j=1

ck jx j, k = 1,2, ...,K (3.5)

subject to

Pr(
n

∑
j=1

ai jx j ≤ bi)≥ (1− γi), i = 1,2, ...,m (3.6)

0 < γi < 1, i = 1,2...,m (3.7)

x j ≥ 0, j = 1,2...,n (3.8)
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where ai j, (i= 1,2, ...,m; j = 1,2, ...,n), are the constraint coefficients, ck j, ( j = 1,2, ...,n);(k= 1,2, ...,K)

are the coefficients associated with the k-th objective function. In the model, only the right hand side

parameters bi,(i = 1,2, ...,m) are considered as random variables which follow different continuous dis-

tributions with known mean and distribution.

3.1 Equivalent Deterministic Models of Multi-Objective Chance Constrained
Programming Problems

Case-I: bi follows Two-parameter exponential distribution

In this case, we assume that bi, (i = 1,2, ...m) in the model (3.5)-(3.8) are independent random variables

following two-parameter exponential distribution ([19]) with parameters θi,σi where mean and variance

of random variable bi are given by:

E(bi) = θi +σi, i = 1,2, ..,m (3.9)

Var(bi) = σ
2
i , i = 1,2, ...,m (3.10)

The probability density function of the i-th two-parameter exponential variable bi is given by

f (bi) =
1
σi

exp
(−(bi−θi)

σi

)
, i = 1,2, ..,m (3.11)

where bi ≥ θi, σi > 0.

To solve the problem (3.5)-(3.8), we establish the deterministic form of the problem. Then from the

chance-constraint (3.6), we have

Pr(
n

∑
j=1

ai jx j ≤ bi)≥ (1− γi)

⇒ Pr(bi ≥
n

∑
j=1

ai jx j)≥ (1− γi)

⇒
∫

∞

n
∑
j=1

ai jx j

f (bi)dbi ≥ (1− γi)

⇒
∫

∞

n
∑
j=1

ai jx j

1
σi

exp
(−(bi−θi)

σi

)
dbi ≥ (1− γi)
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Integrating, we obtain

n

∑
j=1

ai jx j ≤ θi−σiln(1− γi) (3.12)

Using the above result in (3.6), we obtain equivalent deterministic model of (3.5)-(3.8) as follows:

max : zk =
n

∑
j=1

ck jx j, k = 1,2, ...,K (3.13)

subject to

n

∑
j=1

ai jx j ≤ θi−σiln(1− γi) (3.14)

0 < γi < 1, i = 1,2...,m (3.15)

x j ≥ 0, j = 1,2...,n (3.16)

The above model is a Multi-Objective Linear Programming (MOLP) model. Using a suitable technique

for MOLP technique, the model can be solved.

Case-II: bi follows Three-parameter gamma distribution

In this case, we assume that bi, (i = 1,2, ...m) in the model (3.5)-(3.8) are independent random vari-

ables following three-parameter gamma distribution ([20]) with parameters αi,βi and θi where mean and

variance of random variable bi are given by:

E(bi) = αiβi +θi, i = 1,2, ..,m (3.17)

Var(bi) = αiβ
2
i , i = 1,2, ...,m (3.18)

The probability density function (pdf) of the i-th three-parameter gamma variable bi is given by

f (bi) =
1

Γ(αi)β
αi
i
(bi−θi)

αi−1 exp
(−(bi−θi)

βi

)
, i = 1,2, ....m (3.19)

where αi > 0,βi > 0 and bi ≥ θi. It is further assumed that αi is a positive integer.

To solve the CCP problem (3.5)-(3.8), we establish the deterministic model of the problem. In this case,
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right hand side parameters of the chance-constraints follow three-parameter gamma distribution. Then

from the chance-constraint (3.6), we have

Pr(
n

∑
j=1

ai jx j ≤ bi)≥ (1− γi)

⇒ Pr(bi ≥
n

∑
j=1

ai jx j)≥ (1− γi)

⇒
∫

∞

n
∑
j=1

ai jx j

f (bi)dbi ≥ (1− γi)

⇒
∫

∞

n
∑
j=1

ai jx j

1
Γ(αi)β

αi
i
(bi−θi)

αi−1 exp
(−(bi−θi)

βi

)
dbi ≥ (1− γi)

Integrating, we obtain

exp

(−( n
∑
j=1

ai jx j−θi)

βi

)(
αi−1

∑
k=0

1
k!

(( n
∑
j=1

ai jx j−θi)

βi

)k
)
≥ (1− γi) (3.20)

Using the above result in (3.6), we obtain equivalent deterministic model of (3.5)-(3.8) as follows:

max : zk =
n

∑
j=1

ck jx j, k = 1,2, ...,K (3.21)

subject to

exp

(−( n
∑
j=1

ai jx j−θi)

βi

)(
αi−1

∑
r=0

1
r!

(( n
∑
j=1

ai jx j−θi)

βi

)r
)
≥ (1− γi) (3.22)

0 < γi < 1, i = 1,2...,m (3.23)

x j ≥ 0, j = 1,2...,n (3.24)

Case-III: bi follows Power function distribution

Power function distribution ([18]) is a very popular random variable used to estimate the reliability and

hazard rates of a electrical component. Here we consider, bi, (i = 1,2, ...m) in the model (3.5)-(3.8) are

independent random variables following power function distribution. The probability density function

(pdf) of the i-th random variable bi, (i = 1,2, ...,m) is given by:

f (bi) =


βib

βi−1
i

α
βi
i

, if 0 < bi < αi, βi > 0

0, otherwise
(3.25)
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where αi, (i = 1,2, ...,m), and βi, , (i = 1,2, ...,m) are known as positive scale parameter αi and positive

shape parameter βi respectively. The mean and variance of bi (i = 1,2, ...,m) are given by:

E(bi) =
αiβi

1+βi
, i = 1,2, ..,m (3.26)

Var(bi) =
α2

i βi

(2+βi)(1+βi)2 , i = 1,2, ...,m, (3.27)

respectively.

To solve the problem (3.5)-(3.8), we establish the deterministic form of the problem. Then from the

chance-constraint (3.6), we have

Pr(
n

∑
j=1

ai jx j ≤ bi)≥ (1− γi)

⇒
∫

αi

∑
n
j=1 ai jx j

f (bi)dbi ≥ (1− γi)

⇒
∫

αi

∑
n
j=1 ai jx j

βib
βi−1
i

α
βi
i

dbi ≥ (1− γi)

Integrating, we obtain
n

∑
j=1

ai jx j ≤ αiγ
1
βi

i , i = 1,2, ...,m (3.28)

Hence, the equivalent deterministic form of the model (3.5)-(3.8) is given by:

max : zk =
n

∑
j=1

ck jx j, k = 1,2, ...,K (3.29)

subject to

n

∑
j=1

ai jx j ≤ αiγ
1
βi

i , i = 1,2, ...,m (3.30)

0 < γi < 1, i = 1,2...,m (3.31)

x j ≥ 0, j = 1,2...,n (3.32)

The above model is a Multi-Objective Linear Programming (MOLP) model. Using a suitable technique

for MOLP technique, the model can be solved.

In the next section, we will discuss some of the popular techniques used to solve Multi-Objective

Programming (MOP) problems.
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4 Solution Methodology for MOP Problem

MOP problems arise in every branch of science, engineering, and social science. Due to the conflicting

nature of the criteria, a unique feasible solution optimizing all the requirements does not exist. Two

different efficient solutions are characterized by the fact that each of them is better in one criterion but

worse in another. The primary goal of MOP is to seek suitable solutions and Pareto outcomes of multi-

objective programs and, if possible, support the Decision-Maker (DM) in choosing a final preferred

solution. Therefore, it is of interest to design methods for obtaining a complete or partial description of

the Pareto set and efficient set referred to as the solution sets.

Several methods have been developed for solving MOP problems. Some of the widely used efficient

methods are discussed in the following Subsections.

4.1 ε-Constraint Method

The ε-constraint method was developed by Haimes [22]. It is used to generate the Pareto optimal so-

lutions for MOP problems. It It makes use of a single-objective optimizer which handles constraints,

to generate one point of the Pareto front at a time. For transforming the MOP problem into several

single-objective problems with constraints it uses the following procedure:

Step-1: Optimize one of the objective functions (i.e. zk(X),k = 1) considering the other objective

functions as constraints, incorporating them in the constraint part of the model as shown below:

max : z1(x) =
n

∑
j=1

c1
jx j (4.33)

subject to

zk(x) =
n

∑
j=1

ck
jx j ≥ εk,(k = 2, . . . ,K),k 6= 1 (4.34)

n

∑
j=1

ai jx j ≤ bi,(i = 1,2, . . . ,m) (4.35)
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x j ≥ 0,( j = 1,2, . . . ,n) (4.36)

where εk ∈ R is the minimum tolerable objective level.The value of εk is chosen for which the formulated

objective constraints in the above model are binding at the optimal solution.

Step-2: Solve the remaining (K−1) number of objective functions w. r. t. the constraints separately

and find the ranges of each objective functions.

Step-3: Using the ranges of each objective function, the value of the εk, (k = 2,3, . . . ,K) are assigned

by the decision maker to find the Pareto optimal solution of the formulated single objective mathematical

programming model.

Step-4: Continue the process with the remaining objective functions for finding the suitable Pareto

optimal solution.

4.2 Weighting Method

The most widely used method for solving MOP problems is the weighting method. It has been proposed

by Zadeh [21]. This method transforms multiple objective functions into a single objective function,

by multiplying each objective function by a weighting factor, and summing up all weighted objective

functions. This method generates non-dominated solutions by parametrically varying weights. It is

assumed that the objective functions are measured in the same unit. If the objective functions are not in

the same unit, it can be transformed into the same unit before applying the method.

Mathematically, the weighting method can be stated as follows:

max : z =
K

∑
k=1

wkzk(x) (4.37)

subject to

K

∑
k=1

wk = 1,wk ≥ 0,(k = 1,2,3, . . . ,K) (4.38)

x ∈ S (4.39)
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where S is the feasible region of the multi-objective optimization problem. The coefficient wk operating

on the k-th objective function zk, is called a weight and can be interpreted as the relative weight of that

objective function when compared to the other objective functions.

4.3 Fuzzy Programming Method

Fuzzy Programming approach is an important tool for solving Multi-Objective Programming (MOP)

Problems. This technique gives compromise solution of the MOP problem. Fuzzy set theory was first

introduced by Zadeh [23]. Later on, Zimmermann [24] used a fuzzy set theory concept with a suitable

choice of membership function and derived a fuzzy linear program, which is identical to the present-day

max-min problem. Steps of the fuzzy programming technique are as follows:

Step-1: Select the first objective function (i.e. zk,k = 1) and solve it as a single objective optimization

problem subject to the given constraints. Let x(1) be the ideal solution. Then select the second objective

function and find the ideal solution as x(2), continue the process K number of times for K different

objective functions. Let x(1),x(2), . . . ,x(K) be the ideal solutions for the objective functions z1, z2, . . . , zk

respectively.

Step-2: Evaluate all these objective functions at all these ideal solutions and formulate a pay-off matrix

(Table 1) of size K × K as follows.

Table 1: Pay-Off Matrix

z1(x) z2(x) . . . zK(x)

x(1) z11 z12 . . . z1K

x(2) z21 z22 . . . z2K
...

...
...

...
...

x(K) zK1 zK2 . . . zKK

Step-3: From the pay-off matrix (Table 1) determine the bounds for k-th objective function zk(x), (k =

1,2, . . . ,K). If an objective function is of maximization type find the best upper bound U∗k and worst
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lower bound l−k . If an objective function is of minimization type find the best lower bound l∗k and worst

upper bound u−k , (k = 1,2, . . . ,K).

Step-4: Associate a linear membership function µzk(x) to the k-th objective function zk(x) as:

µzk(x) =


1, i f zk(x)≥ u∗k
zk(x)−l−k

u∗k−l−k
, i f l−k < zk(x)< u∗k , (k = 1,2,3, . . . ,K)

0, i f zk(x)≤ l−k

(4.40)

6

-
0

1

l−k u∗k
zk

µzk

Figure 1: Membership Function of a Vector Maximization Problem

µzk(x) =


1, i f zk(x)≤ l∗k
u−k −zk(x)

u−k −l∗k
, i f l∗k < zk(x)< u−k , (k = 1,2,3, . . . ,K)

0, i f zk(x)≥ u−k

(4.41)

-

6

1

L∗k U−k
0

µzk

zk

Figure 2: Membership Function of a Vector Minimization Problem
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Step-5: (a) Use max-min operator with an augmented variable λ and formulate a single objective crisp

optimization problem as:

max : λ (4.42)

subject to

λ ≤ µzk(x), (k = 1,2,3, . . . ,K) (4.43)

x ∈ S (4.44)

where S is the feasible region of the optimization model.

(b) Similarly, if we use min-max operator with an augmented variable λ , a single objective crisp

optimization problem can be formulated as:

min : λ (4.45)

subject to

λ ≥ µzk(x), (k = 1,2,3, . . . ,K) (4.46)

x ∈ S (4.47)

where S is the feasible region of the optimization model.

Step-6: Solve the crisp model by using a suitable mathematical programming technique to find an op-

timal compromise solution x∗. Then evaluate all the objective functions at the optimal compromise

solution x∗.

If the weights of multiple objective functions are interpreted as the relative preference of some DM,

then the solution is equivalent to the best compromise solution i.e. the optimal solution relative to a

particular preference structure. Also the optimal solution to the problem is a non-dominated solution

provided all the weights are positive.
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5 Numerical Examples

Here, we consider a Multi-objective CCP problem where the right hand side parameters of the constraints

follow two-parameter exponential distribution. We first obain the deterministic equivalent of the prob-

lem, then we solve the obtained deterministic Multi-objective CCP problem using ε-constraint method,

weighting method, and fuzzy programming method.

Example-1: Solution by ε-constrained Method:

max : z1 = 5x1 +8x2 +7x3 (5.48)

max : z2 = 2x1 +3x2 + x3 (5.49)

subject to

Pr(2x1 +6x2 +5x3 ≤ b1)≥ 0.99 (5.50)

Pr(5x1 +11x2 +4x3 ≤ b2)≥ 0.95 (5.51)

Pr(4x1 +5x2 + x3 ≤ b3)≥ 0.90 (5.52)

x j ≥ 0, j = 1,2,3 (5.53)

Here, we assume that bi (i = 1,2,3) are random variables following two parameter exponential distribu-

tion with following parameters:

E(b1) = 161,E(b2) = 144,E(b3) = 106 and

Var(b1) = 25,Var(b2) = 36,Var(b3) = 64.

Using (3.9) and (3.10), the parameters are calculated as follows:

θ1 = 156,σ1 = 5, θ2 = 138,σ2 = 6, θ3 = 98 and σ3 = 8.
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Now, using (3.13)-(3.16), the equivalent deterministic model of (5.48)-(5.53) can be formulated as

follows:

max : z1 = 5x1 +8x2 +7x3 (5.54)

max : z2 = 2x1 +3x2 + x3 (5.55)

subject to

2x1 +6x2 +5x3 ≤ 156.05 (5.56)

5x1 +11x2 +4x3 ≤ 138.308 (5.57)

4x1 +5x2 + x3 ≤ 98.4103 (5.58)

x j ≥ 0, j = 1,2,3 (5.59)

To obtain the Pareto optimal solution, we have applied ε-constrained method. Thus, ideal solutions

are obtained as

max z1 = 227.1846, x1 = 3.961176,x2 = 0,x3 = 29.62553

max z2 = 51.98608 x1 = 23.2121,x2 = 0,x3 = 5.561864

Using the ideal solutions we can find the lower bound Li and upper bound Ui of the function Zi, i= 1,2.

L1 = 154.993584 < z1 < 227.1864 =U1 and L2 = 37.547882 < z2 < 51.98608 =U2, i.e, 154.993584 <

ε1 < 227.1864 and 37.547882 < ε2 < 51.98608. Considering ε1 and ε2 as defined in the intervals, two

different LP problems are formulated as follows:

(I) max z1 = 5x1 +8x2 +7x3,
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subject to

2x1 +3x2 + x3 ≥ ε2,

2x1 +6x2 +5x3 ≤ 156.05,

5x1 +11x2 +4x3 ≤ 138.308,

4x1 +5x2 + x3 ≤ 98.4103,

x1,x2,x3 ≥ 0.

(II) max z1 = 2x1 +3x2 + x3,

subject to

5x1 +8x2 +7x3 ≥ ε1,

2x1 +6x2 +5x3 ≤ 156.05

5x1 +11x2 +4x3 ≤ 138.308

4x1 +5x2 + x3 ≤ 98.4103

x1,x2,x3 ≥ 0.

We solved the problem by using LINGO 11.0, and the obtained solution is presented in the Table 2,

and Table 3

Example-2:Solution by Weighting method:

Now, we solve the deterministic MO problem (5.54)-(5.59) using weighted sum method. Thus, the

problem becomes,

max z∗ = w1(5x1 +8x2 +7x3)+w2(2x1 +3x2 + x3),
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Table 2: Pareto-optimal solution of problem (I)

x1 x2 x3 ε2 Z1

3.961176 0 29.62553 37.5 227.1864
7.230667 0 25.53867 40 214.9240
9.98733 0 22.20533 42 204.9240
13.59067 0 17.58867 44.77 191.0740
17.89733 0 12.20533 48 174.9240
23.2040 0 5.5720 51.98 155.0240

Table 3: Pareto-optimal solution of problem (II)

x1 x2 x3 ε1 Z2

23.21175 0 5.561106 154.99 51.98592
21.87707 0 7.230667 160 50.9848
16.54373 0 13.89733 180 46.9848
13.61040 0 17.5640 191 44.7848
8.543733 0 23.89733 210 40.9848
3.9624 0 29.624 227.18 37.5488

subject to

2x1 +6x2 +5x3 ≤ 156.05

5x1 +11x2 +4x3 ≤ 138.308

4x1 +5x2 + x3 ≤ 98.4103

w1 +w2 = 1

x1,x2,x3 ≥ 0.

We solved the problem by using Lingo software [30] and present the solution in the Table 4,

Example-3: Solution by Fuzzy Programming Method:

We solve the detereministic MO problem (5.54)-(5.59)using Fuzzy Programming Method.
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Table 4: Pareto-optimal solution

w1 w2 z1 z2 Decision variable z∗

0.1 0.9 154.9936 51.98608 x1 = 23.2121,x2 = 0,x3 = 5.561864 62.28683
0.2 0.8 227.1864 37.54788 x1 = 3.961176,x2 = 0,x3 =

29.62553
113.4026

0.5 0.5 227.1864 37.54788 x1 = 3.961176,x2 = 0,x3 =
29.62553

132.3662

0.6 0.4 227.1864 37.54788 x1 = 3.961176,x2 = 0,x3 =
29.62553

151.3299

0.9 0.1 227.1864 37.54788 x1 = 3.961176,x2 = 0,x3 =
29.62553

208.2203

Here, ideal solution of the problem is obtained as:

max z1 = 227.1846, x1 = 3.961176,x2 = 0,x3 = 29.62553

max z2 = 51.98608 x1 = 23.2121,x2 = 0,x3 = 5.561864

Evaluating all these objective functions at all a pay-off matrix is formulated as: using Fuzzy linear

Table 5: Pay-off Matrix
z1(x) z2(x)

x(1) 227.1846 37.547882
x(2) 154.993584 51.98608

membership functions and max-min operator, we have

max : λ (5.60)
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subject to

5x1 +8x2 +7x3 +(227.1864−154.993504)λ ≥ 227.1864 (5.61)

2x1 +3x2 + x3 +(51.98608−37.547882)λ ≥ 51.98608 (5.62)

2x1 +6x2 +5x3 ≤ 156.05 (5.63)

5x1 +11x2 +4x3 ≤ 138.308 (5.64)

4x1 +5x2 + x3 ≤ 98.4103 (5.65)

x j ≥ 0, , j = 1,2,3, λ > 0 (5.66)

The above model is solved using LINGO(11.0), and the compromise solution is obtained as follows:

λ = 0.50000062, x1 = 13.5865,x2 = 0,x3 = 17.59385, z1 = 191.0895,z2 = 44.76668

6 Conclusions

In this paper, we consider a multi-objective stochastic linear programming problem where some chance-

constraints are involved. In these chance-constraints, the right hand side parameters are considered as

random variables. By considering the fact that the random variables follows Two-parameter exponential

distribution, Three-parameter gamma distribution, and Power function distribution with known param-

eters, we establish the equivalent deterministic form of the chance-constraints. Fuzzy programming

technique is used to solve the multi-objective deterministic models. It will be interesting to study the

chance-constraint problem with technological coefficients and cost coefficients as Two-parameter ex-

ponential distribution, Three-parameter gamma distribution, and Power function distribution. We can

apply the result of this study in portfolio optimization. The study can be extended for nonlinear chance-

constrained problem and in hierarchical decision making framework
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