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1. Definitions and Notations

The sequence {µn} is said to be a moment sequence if

µn =

∫ 1

0
µndχ(u) (n = 0, 1, 2, ...) (1)

where χ(µ) is called the mass function of moments µn and is of bounded

variation in the closed interval [0, 1]. It is also supposed that χ(0) = 0 and

µ0 =

∫ 1

0
dχ(u) = 1. The conditions for moment sequence imply χ(1) = 1.

16
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Further if χ(u) is continuous at the origin; that is

χ(0+) = χ(0) = 0

then χ(u) is called a regular mass function and {µn} is called regular moment

sequence. Let
∞∑
n=0

an be an infinite series and {sn} be the sequence of its

partial sums. Corresponding to a moment sequence {µn} or a mass function

χ(u), we write the sequence to sequence transformation by

tn =
n∑
k=0

{∫ 1

0

(
n

k

)
uk(1− u)n−kdχ(u)

}
sk (2)

OR

tn =
n∑
k=0

(
n

k

)
(∆n−kµk)sk (3)

where for n ≥ 0,∆0µn = µn; ∆Pµn = ∆P−1(µn − µn+1), P ≥ 1.

The sequence {sn} (or the series
∞∑
n=0

an) is said to be Hausdorff summable to

s [4], [8] if lim
n→∞

tn = s; sequence {tn} is called Hausdorff mean of sequence

{sn}.
Let µ = (µnk) and δ = (δmn) be triangular matrices defined respectively by

µnn = µn(n = 0, 1, 2, ...)

µnk = 0 (n 6= k)

and δmn =

{
(−1)n

(
m
n

)
;n ≤ m

0, n > m
(4)

Then the matrix A = δµδ is called a Hausdorff matrix, if {µn} is a moment

sequence (or if χ(u) is a mass function). Thus the Hausdorff matrix A = (ank)

are given by

ank =

{ ∑n
m=k δnm.µm.δmk, k ≤ n

0, k > n
(5)
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whence by use of (1.1) we get

ank =

{ ∫ 1
0

(
n
k

)
uk(1− u)n−k.dχ(u), k ≤ n

0, k > n
(6)

It is easily seen that if the mass function χ(u) is continuous at the origin then

the Hausdorff matrix is regular. if the mass function χ(u) = {1−(1−u)α}, α >
0, 0 ≤ u ≤ 1, then µn =

(
n+α
n

)−1
and Hausdorff method reduces to familiar

Cesaro (C,α) method ( see Hardy [4] ). On the otherhand, if we take for q > 0

χ(u) =

{
0, when 0 ≤ u < 1

1+q

1, when 1
1+q ≤ u ≤ 1

then Hausdorff method reduces to familiar Euler’s method (see Hardy[4] )

Let f(t) be a periodic function of period 2π and integrable in the sense of

Lebesgue over [−π, π]. Let the Fourier series of f at t = x be given by

a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) (7)

and Sn(x) be the sequence of partial sums of the series (1.7). We write

Dn(t) =
sin
(
n+ 1

2

)
t

2 sin t/2
(8)

ϕx(t) = {f(x+ t) + f(x− t)− 2f(x)} (9)

It is easily seen that

Sn(x)− f(x) =
1

π

∫ π

0
ϕx(t).Dn(t)dt (10)

As we are concerned with degree of approximation of functions by the Haus-

dorff mean of their Fourier series we write using(1.2) the Hausdorff mean of

the sequence

{Sn(x)} as Hn(f(x), χ) =
n∑
k=0

{∫ 1

0

(
n

k

)
uk(1− u)n−k.dχ(u)

}
Sk(x) (11)
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using(1.10)

Hn(f(x), χ) =
n∑
k=0

{∫ 1

0

(
n

k

)
uk(1− u)n−k.dχ(u)

}{
1

π

∫ π

0
ϕx(t)Dk(t)dt+ f(x)

}

=
n∑
k=0

{∫ 1

0

(
n

k

)
uk(1− u)n−k.dχ(u)

}{
1

π

∫ π

0
ϕx(t)Dk(t)dt

}
+ f(x)

whence using the fact that
n∑
k=0

∫ 1

0

(
n

k

)
uk(1− u)n−kdχ(u) = 1

We get

Hn(f(x), χ)− f(x) =

∫ π

0
ϕx(t)

[
n∑
k=0

∫ 1

0

(
n

k

)
uk(1− u)n−kdχ(u).

sin
(
k + 1

2

)
t

2π sin t/2

]
dt

=

∫ π

0
ϕx(t)

[
n∑
k=0

(
n

k

)
sin
(
k + 1

2

)
t

2π sin t/2

∫ 1

0
uk(1− u)n−k.dχ(u)

]
dt

=

∫ π

0
ϕx(t)Hn(t)dt (12)

where

Hn(t) =
n∑
k=0

(
n

k

)
sin
(
k + 1

2

)
t

2π sin t/2

∫ 1

0
uk(1− u)n−k.dχ(u) (13)

Hn(t) is called the Hausdorff kernel.

By simple Computation we obtain from (1.13).

Hn(t) =
1

2π

∫ 1

0
Rn(u, t) cosnΘdχ(u) +

1

2π
cot

t

2

∫ 1

0
Rn(u, t) sin nΘdχ(u)

(14)

where R(u, t) = |1− u+ ueit|

Θ = tan−1
u sin t

1− u+ u cos t

Again writing Qrn(t) =
1

2π

∫ 1

0
Rn(u, t) cosnΘdχ(u) and

Qin(t) =
1

2π

∫ 1

0
Rn(u, t) sinnΘdχ(u)
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We obtain from (1.14)

Hn(t) = Qrn(t) +Qin(t) cot t/2 (15)

Further it is easy to see that

(i) Hn(t) is an even function

and

(ii)

∫ π

−π
Hn(t)dt = 1 (16)

Let C2π denote the Banach space of all 2π periodic continuous functions under

sup-norm. For 0 < α ≤ 1 and some positive constant K, the function space

Hα is given by

Hα = {f ∈ C2π : |f(x)− f(y)| ≤ K|x− y|α} (17)

The space Hα is a Banach space [9] with norm ‖.‖α defined by

‖f‖α = ‖f‖c + sup
x 6=y

∆α(f(x, y)) (18)

where ‖f‖c = sup
−π≤x≤π

|f(x)|

and ∆α(f(x, y)) =
|f(x)− f(y)|
|x− y|α

, (x 6= y).

We shall use the convention that ∆0f(x, y) = 0. The metric induced by the

norm (1.18) is called a Hölder metric. It can be seen that

‖f‖β ≤ (2π)α−β‖f‖α, (0 ≤ β < α ≤ 1) (19)

Thus {Hα, ‖.‖α} is a family of Banach spaces which decreases as α increases

that is

C2π ⊇ Hβ ⊇ Hα (0 ≤ β < α ≤ 1)

The space Lp[0, 2π] when ρ = ∞ includes the space C2π of all continuous

functions defined over [0, 2π].
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We write

‖f‖p =


(

1
2π

∫ 2π
0 |f(t)|p.dt

) 1
p
, p ≥ 1∫ 2π

0 |f(t)|p.dt, 0 < p < 1
‖f‖c, p =∞

(20)

and

w(δ) = w(δ, f) = sup
0≤h≤δ

‖f(x+ h)− f(x)‖c (21)

wp(δ) = wp(δ, f) = sup
0≤h≤δ

‖f(x+ h)− f(x)‖p (22)

w2
p(δ) = w2

p(δ, f) = sup
0≤h≤δ

‖f(x+ h) + f(x− h)− 2f(x)‖p (23)

which are respectively called modulus of continuity, integral modulus of con-

tinuity and integral modulus of smoothness ( [14], p.42).

In the case 0 < α ≤ 1 and wp(δ, f) = 0(δα). We write f ∈ Lip(α, p). The case

α > 1 is of no interest as in this case f turns out to be constant. The class

Lip(α, p) with P =∞ will be taken as Lip α.

Hölder metric has been generalized in [3] as follows.

For 0 < α ≤ 1 write

H(α, p) = {f ∈ Lp, 0 < p ≤ ∞ : ‖f(x+ h)− f(x)‖p ≤ k|h|α}.

and define for f ∈ H(α, p)

‖f‖(α,p) = ‖f‖p + sup
h6=0

‖f(x+ h)− f(x)‖p
|h|α

(24)

‖f‖(0,p) = ‖f‖p.

It can be easily verified that (1.24) is a norm for p ≥ 1 and a p-norm in the

case 0 < p < 1. Note that H(α,∞) is the familiar Hα space introduced earlier

by Prössdorf [9].
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We write

En(u, t) = ecnu(1−u)t
2
, (0 ≤ u ≤ 1), (0 ≤ t ≤ π) (25)

ln(x) = Hn(f(x), χ)− f(x) (26)

F (t) = ϕx+y(t)− ϕx(t) (27)

f ↑ to denote f is non decreasing

f ↓ to denote f is non increasing .

2. Introduction and Statement of the Theorem

Prössdorff [9] studied the degree of approximation in the Hölder metric and

proved the following theorem.

Theorem A[9] Let f ∈ Hα(0 < α ≤ 1) and 0 ≤ β < α ≤ 1

Then

‖δn(f)− f‖β = O(1)

{
nβ−α, 0 < α < 1
nβ−1(1 + log n)1−β, α = 1

where δn(f) is the Fejer mean of the Fourier series of f .

The case β = 0 is due to Alexists[1]. Chandra [2] obtained a generalization of

Theorem A in the Nörlund or (N, pn) transform and Reiesz transform set up

with regard to approximation of functions in Lp norm the following theorem

is due to Quade.

Theorem B [10] Let f ∈ Lip(α, p), (0 < α ≤ 1). Then

‖δn(f)− f‖p = O(1)


n−α, (p > 1)
n−α, (p = 1, 0 < α < 1)
logn
n , (p = 1, α = 1)

With a view to generalise the above results in Nörlund transformation set up

attempts were made by Sahaney and Rao[12], Chandra [2], Khan[6]. Moha-

patra and Russel [7]. Considered this in generalized Nörlund means set up.

With regard to the approximation of function in the generalised Hölder met-

ric by matrix mean see Das, Ghosh and Ray[3]. In 2001, Rhodes has studied

the degree of approximation of functions belonging to a certain weighted class
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by their Fourier series using Hausdorff means possessing mass function with

bounded derivatives.

The objective of the present paper is to study the approximation problems

by Hausdorff mean in the generalised Hölder metric.

We prove the following.

Theorem Let

(i) χ(u) be absolutely continuous over interval (0, 1) .

(ii) χ
′
(u) be positive and non decreasing in (0, 1)

(iii) f ∈ H(α, p) and p ≥ 1.

Then for 0 ≤ β < α ≤ 1

‖Hn(f(x), χ)− f(x)‖(β,p) = O(1)
1

nα−β

[∫ 1

1
n

χ(z).dz

zα−β+1
+

∫ 1

1
n

χ(1)− χ(1− z)
zα−β+1

dz

]

+O(1)
1

nα−β

∫ 1− 1
n

1
n

χ
′
(u)du

[u(1− u)]α−β
(28)

3. Lemmas

To prove the theorem we use the following Lemmas.

Lemma 1 Let ln(x) = Hn(f(x), χ)− f(x). If f ∈ H(α, p), p ≥ 1

Then

‖ln(x+ y)− ln(x)‖p ≤


∫ π

0
‖ϕx+y − ϕx‖p|Hn(t)|dt, p ≥ 1

∫ π

0
‖ϕx+y − ϕx‖p|Hn(t)|pdt, 0 < p < 1

Proof

Using (1.12) and (1.20) for p ≥ 1

ln(x) =

∫ π

0
ϕx(t).Hn(t).dt
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and

‖ln(x+ y)− ln(x)‖p =

[
1

π

∫ π

0
|ln(x+ y)− ln(x)|pdx

] 1
p

=

[
1

π

∫ π

0
dx

∣∣∣∣∫ π

0
{ϕx+y(t)− ϕx(t)}Hn(t)dt

∣∣∣∣p] 1
p

whence by generalised Minkowski inequality we obtain

‖ln(x+ y)− ln(x)‖p ≤
∫ π

0
‖ϕx+y − ϕx‖p|Hn(t)|dt

In the case 0 < p < 1, we use modified generalised Minkowski inequality and

obtain the result.

This completes the proof.

Lemma 2 Let f ∈ H(α, p), 0 < α ≤ 1, 0 < p ≤ ∞. Then

‖ϕx+y(t)− ϕx(t)‖p = O(1)

{
|t|α
|y|α.

Proof For P ≥ 1 and using Minkowski’s inequality(∫ 2π

0
|ϕx(t)|p.dx

) 1
p

≤
(∫ 2π

0
|f(x+ t)− f(x)|pdx

) 1
p

+

(∫ 2π

0
|f(x− t)− f(x)|pdx

) 1
p

.

and for 0 < p < 1 we have the modified Minkowski type inequality∫ 2π

0
|ϕx(t)|pdx ≤

∫ 2π

0
|f(x+ t)− f(x)|p.dx+

∫ 2π

0
|f(x− t)− f(x)|pdx.

Thus the first order estimate follows.

For proving the second order estimate we first note that

ϕx+y(t)−ϕx(t) = {f(x+y+t)−f(x+t)}+{f(x+y−t)−f(x−t)}−2{f(x+y)−f(x)}

and then apply Minkowski’s inequality separately for p ≥ 1 and for 0 < p < 1.

Lemma 3 Let f ∈ H(α, p), 0 < α ≤ 1, 0 < p ≤ ∞. Then

‖F (t)‖P = O(1)|y|β.|t|α−β.

Proof Using (1.27) and Lemma 2, we have

‖F (t)‖p = O(1)

{
|t|α
|y|α. (29)
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Writing ‖F (t)‖p = ‖F (t)‖β/αp .‖F (t)‖1−β/αp and using the estimates in (3.1) we

obtain

‖F (t)‖p = O(1)|y|β.|t|α−β

This completes the proof.

Lemma 4 [5] For 0 ≤ u ≤ 1, 0 ≤ t ≤ π
(i) R(u, t) = O(1)e−cu(1−u)t

2
(c > 0)

(ii) Rn(u, t) = O(1)e−cnu(1−u)t
2
(c > 0)

(iii) Hn(t) = O(n)

(iv) Hn(t) = O(1)
1

t

∫ 1

0
e−cnu(1−u)t

2
dχ(u) (c > 0)

Lemma 5 [13] For small t ∈ (0, π) and fixed δ0

Θ = ut+Au(1− u)t3

where |A| ≤ δ0.
Lemma 6 For small t ∈ (0, π)

(i) sinnΘ− sinnut = O(1)nu(1− u)t3.

(ii) cosnΘ− cosnut = O(1)nu(1− u)t3.

Proof of (i)

| sinnΘ−sin nut| = |2 cos
nΘ + nut

2
, sin

nΘ− nut
2

| ≤ n|Θ−ut| = O(1)nu(1−t)t3 [by Lemma 5]

Hence the proof.

We omit the proof of (ii) as it can be proved by using arguments similar to

those used in proving lemma 6(i).

Lemma 7 For 0 ≤ β ≤ 1 and 0 ≤ u ≤ 1

e−cnu(1−u)t
2

= O(1)
1

nβ

[
1

(u(1− u)t2)β

]
(c > 0)

Proof We have

En(u, t) = ecnu(1−u)t
2 ≥ 1 (30)

En(u, t) = ecnu(1−u)t
2
> cnu(1− u)t2 (31)
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Writing En(u, t) = [En(u, t)]1−β . [En(u, t)]β and using (3.2) and (3.3) we get

En(u, t) > [cnu(1− u)t2]β (32)

⇒ e−cnu(1−u)t
2

=
1

En(u, t)
= O(1)

1

nβ

[
1

(u(1− u)t2)β

]
.

This completes the proof of the Lemma.

Lemma 8 For 0 < α ≤ 1, 0 ≤ u ≤ 1, k ∈ N,C > 0 and 0 ≤ β < α∫ U2

U1

θ
k+α−β

2 .e−cθ.dθ = O(1)

{
n
k+α−β

2 .[u(1− u)]
k+α−β

2

n
k−α+β

2 .[u(1− u)]
k−α+β

2

where

U1 = π2u(1− u).n−1, U2 = δ2u(1− u)n

and δ is a fixed number between 0 and π .

Proof :We have∫ U2

U1

θ
k+α−β

2 .e−cθ.dθ ≤ U
k+α−β

2
2 .

∫ U2

U1

e−cθ.dθ

≤ U
k+α−β

2
2 .

∫ ∞
0

e−cθ.dθ

= O(1)U
k+α−β

2
2

= O(1)n
k+α−β

2 .[u(1− u)]
k+α−β

2 (33)

Again ∫ U2

U1

θ
k+α−β

2 .e−cθ.dθ =

∫ U2

U1

θ
k−α+β

2 .θα−β.e−cθ.dθ

= U
k−α+β

2
2

∫ ∞
U1

.θα−β.e−cθ.dθ

= O(1)U
k−α+β

2
2

= O(1)n
k−α+β

2 .[u(1− u)]
k−α+β

2 (34)

Proof of the lemma follows from (3.5) and (3.6) .

Lemma 9 Let

(i) χ(u) be absolutely continuous over interval (0, 1).
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(ii) χ
′
(u) be positive in (0, 1) .

Then for 0 ≤ β < α ≤ 1

(i) χ

(
1

n

)
= O(1)

1

nα−β

∫ 1

1
n

χ(y)

yα−β+1
dy

(ii) χ(1)− χ
(

1− 1

n

)
= O(1)

1

nα−β

∫ 1

1
n

χ(1)− χ(1− y)

yα−β+1
dy

(iii)
1

nα−β

∫ 1

1
n

χ1(1− y)

yα−β
dy = O(1)

1

nα−β

∫ 1

1
n

χ(1)− χ(1− y)

yα−β+1
dy

Proof (i) We have

1

nα−β

∫ 1

1
n

χ1(y) dy

yα−β

=
1

nα−β

[
χ(y)

yα−β

]1
1
n

+
α− β
nα−β

∫ 1

1
n

χ(y)dy

yα−β+1

=
1

nα−β
− χ

(
1

n

)
+
α− β
nα−β

∫ 1

1
n

χ(y)dy

yα−β+1

whence we get

χ

(
1

n

)
=

1

nα−β
+
α− β
nα−β

∫ 1

1
n

χ(y)dy

yα−β+1
− 1

nα−β

∫ 1

1
n

χ1(y)

yα−β
dy

= O(1)
1

nα−β

∫ 1

1
n

χ(y)dy

yα−β+1
dy

(since χ1(u) is positive )

This completes the proof of Lemma 9(i) . We omit the proof of Lemma 9(ii)
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and Lemma 9 (iii) as it can be proved by using the relation

1

nα−β

∫ 1

1
n

χ1(1− y)dy

yα−β

=
1

nα−β
+
α− β
nα−β

∫ 1

1
n

χ(1)− χ(1− y)

yα−β+1
dy

−
[
χ(1)− χ

(
1− 1

n

)]
and

arguments similar to those used in proving Lemma 9 (i) .

Lemma 10 For fixed t ∈ (0, π) and u ∈ [0, 1] , Let

(a) χ(u) be absolutely continuous over interval (0, 1)

(b) χ1(u) be positive

Then ∫ 1

0
e−cnu(1−u)t

2
.dχ(u)

= O(1)

[
χ

(
1

n

)
+

{
χ(1)− χ

(
1− 1

n

)}]
+O(1)

1

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β
(0 ≤ β < α ≤ 1, C > 0)

Proof We write∫ 1

0
e−cnu(1−u)t

2
.dχ(u)

=

[∫ 1
n

0
+

∫ 1− 1
n

1
n

+

∫ 1

1− 1
n

]
e−cnu(1−u)t

2
.dχ(u)

= K1 +K2 +K3 (say)

Using the fact that e−cnu(1−u)t
2 ≤ 1 for k1 and k3

We obtain

K1 ≤
∫ 1

n

0
dχ(u) = O(1)χ

(
1

n

)
K3 ≤

∫ 1
n

1− 1
n

dχ(u) = O(1)

[
χ(1)− χ

(
1− 1

n

)]
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Using Lemma 7 for K2 , we obtain

K2 = O(1)
1

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β

Collecting the estimates for K1,K3 and K2 we obtain the result .

Lemma 11 For t >
π

n
and h =

π

nt
, let

(a) χ(u) be absolutely continuous over interval (0, 1) .

(b) χ1(u) be positive and χ
′ ↑ in (0, 1)

Then

(i)

∫ 1

0
χ1(u)Rn(u, t) sinnutdu

= O(1)
[
χ
( π
nt

)
+
{
χ(1)− χ

(
1− π

nt

)}]
+O(1)

(
χ1
(
1− π

nt

)
nt

)

(ii)

∫ 1

0
χ1(u)Rn(u, t) cosnutdu

= O(1)
[
χ
( π
nt

)
+
{
χ(1)− χ

(
1− π

nt

)}]
+
χ1
(
1− π

nt

)
nt

.

Proof of (i) We write

(i)

∫ 1

0
χ1(u)Rn(u, t) sinnutdu

=

[∫ h

0
+

∫ 1−h

h
+

∫ 1

1−h

]
χ1(u)Rn(u, t) sinnutdu

= M1 +M2 +M3 (say)

AS |Rn(u, t) sinnut| ≤ 1, we getM1 and M3 we get

M1 = O(1)χ
( π
nt

)
andM3 = O(1)

[
χ(1)− χ

(
1− π

nt

)]
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Again if h =
π

nt
<

1

2
we write

M2 =

[∫ 1
2

h
+

∫ 1−h

1
2

]
χ1(u)Rn(u, t) sinnut du

= M21 +M22 (say)

Incase h = π
nt >

1
2 , we need not split the integral M2 .

Case I For h =
π

nt
<

1

2
we have for h < ξ < η <

1

2

M21 =

∫ 1
2

h
χ1(u)Rn(u, t) sinnutdu

= χ1

(
1

2

)∫ 1
2

ξ
Rn(u, t) sinnutdu

= χ1

(
1

2

)
Rn(ξ, t)

∫ η

ξ
sinnutdu

= O(1)
χ1
(
1
2

)
nt

and for
1

2
< ξ

′
< 1− h

M22 =

∫ 1−h

1
2

χ1(u)Rn(u, t) sinnutdu

= χ1(1− h)Rn(1− h, t)
∫ 1−h

ξ1
sinnutdu

= O(1)
χ1(1− h)

nt
= O(1)

(
χ1
(
1− π

nt

)
nt

)

(since χ1 ↑ , Rn(u, t) ↓ for 0 < u < 1
2 and χ1 ↑ , Rn(u, t) ↑ for 1

2 < u < 1 )

Hence collecting the estimates for M21 and M22 we obtain

M21 +M22 = O(1)

(
χ1
(
1− π

nt

)
nt

)
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Case II For h =
π

nt
>

1

2
, we have the single integral

M2 =

∫ 1−h

h
χ1(u)Rn(u, t) sinnutdu

= O(1)

(
χ1
(
1− π

nt

)
nt

)

From case (I and II) , we get

M2 = O(1)

(
χ1
(
1− π

nt

)
nt

)

Collecting the estimates for M1,M3 and M2 we obtain the result .

We omit the proof of Lemma 11(ii) as it can be proved by using arguments

similar to those used in proving lemma 11(i) .

4. Proof of the Theorem

Using Lemma 1 and (1.27) we have

‖ln(x)− ln(x+ y)‖p ≤
∫ π

0
‖ϕx(t)− ϕx+y(t)‖p||dt

=

∫ π

0
‖F (t)‖p|Hn(t)| dt

=

[∫ π/n

0
+

∫ δ

π/n
+

∫ π

δ

]
‖F (t)‖p|Hn(t)| dt

= I + J +K (say) (35)

Using Lemma 3 and Lemma 4 (iii) , we get

I = O(n).|y|β
∫ π/n

0
tα−β.dt

= O(1)
|y|β

nα−β
(36)
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Since χ(u) is absolutely continuous over (0, 1) and χ1, is positive, using Lemma

3, Lemma 4 (iv) and Lemma 10 we get

K = O(1)|y|β
∫ π

δ

tα−β

t

{∫ 1

0
e−cnu(1−u)t

2
dχ(u)

}
dt

= O(1)|y|β
∫ 1

0
χ1(u)du

{∫ π

δ

tα−β

t
e−cnu(1−u)t

2
dt

}
= O(1)|y|β

∫ 1

0
χ
′
(u).e−cnu(1−u)δ

2
du

= O(1)|y|β
[
χ

(
1

n

)
+

{
χ(1)− χ

(
1− 1

n

)}]
+O(1)|y|β 1

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β
(37)

[
Since e−cnu(1−u)t

2 ↓ in t and
tα−β

t
∈ L(δ, π)

]

Using (1.5) we have

J =

∫ δ

π
n

‖F (t)‖p|Qrn(t) +Qin(t) cot t/2|dt

≤
∫ δ

π
n

‖F (t)‖p|Qrn(t)|dt+

∫ δ

π
n

‖F (t)‖p|Qin(t)|| cot t/2|dt

=
1

2π
‖F (t)‖p

∣∣∣∣∫ 1

0
Rn(u, t) cosnΘdχ(u)

∣∣∣∣ dt
+

1

2π

∫ δ

π/n
‖F (t)‖p

dt

| tan t/2|

∣∣∣∣∫ 1

0
Rn(u, t) sinnΘdχ(u)

∣∣∣∣
= J1 + J2 (say) (38)
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We write

J1 =
1

2π

∫ δ

π
n

‖F (t)‖p
∣∣∣∣∫ 1

0
Rn(u, t)(cosnΘ− cosnut+ cosnut)dχ (u)

∣∣∣∣ dt
=

1

2π

∫ δ

π
n

‖F (t)‖p
∫ 1

0
|Rn(u, t)(cosnΘ− cosnut)dχ (u)|

+
1

2π

∫ δ

π
n

‖F (t)‖pdt
∣∣∣∣∫ 1

0
Rn(u, t) cosnutdχ (u)

∣∣∣∣
= J11 + J12 (say) (39)

Using Lemma 3 , Lemma 4(ii) and Lemma 6(ii), we get

J11 = O(1)|y|β
∫ 1

0
χ1(u)du

∫ δ

π
n

tα−β.e−cnu(1−u)t
2
nu(1− u)t3.dt

whence putting nu(1 − u)t2 = θ and writing , U1 = π2u(1 − u).n−1, U2 =

δ2u(1− u).n

We get

J11 = O(1)
|y|β

n
2+α−β

2

[∫ 1

0

χ1(u)du

[u(1− u)]
α−β+1

2

∫ U2

U1

θ
2+α−β

2 .e−cθ.dθ

]

+O(1)
|y|β

n
2+α−β

2

[∫ 1
n

0
+

∫ 1− 1
n

1
n

+

∫ 1

1− 1
n

]
χ1(u)du

[u(1− u)]
2+α−β

2

∫ U2

U1

θ
2+α−β

2 .e−cθ.dθ

= l1 + l2 + l3 (say) (40)

Using first estimate of lemma 8 ( taking k = 2 ), we get

l1 = O(1)|y|βχ
(

1

n

)
and l3 = O(1)|y|β

{
χ(1)− χ

(
1− 1

n

)}
(41)

Using second estimate of Lemma 8 ( taking k = 2), we get

l2 = O(1)
|y|β

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β
(42)
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Collecting the estimates for l1, l2 and l3 we obtain

J11 = O(1)|y|β
[
χ

(
1

n

)
+

{
χ(1)− χ

(
1− 1

n

)}]
+O(1)

|y|β

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β
(43)

For t >
π

n
we write h =

π

nt
.

Now we proceed to deal with J12 . From (4.5) , using Lemma 3 and lemma

11 (ii) we get

J12 = O(1)|y|β
∫ δ

π
n

tα−βdt
[
χ
( π
nt

)
+
{
χ(1)− χ

(
1− π

nt

)}]
+
χ1
(
1− π

nt

)
nt

whence putting t =
π

nz
we obtain

J12 = O(1)|y|β
∫ 1

π
δn

( π
nz

)α−β [
χ(z) + {χ(1)− χ(1− z)}+ χ1(1− z).z

]
.
dz

nz2

= O(1)
|y|β

nα−β+1

[∫ 1

1
n

χ(z)dz

zα−β+2
+

∫ 1

1
n

χ(1)− χ(1− z)
zα−β+2

dz

]

+O(1)
|y|β

nα−β+1

∫ 1

1
n

χ1(1− z)
zα−β+1

dz

= O(1)
|y|β

nα−β

[∫ 1

1
n

χ(z)dz

zα−β+1
+

∫ 1

1
n

χ(1)− χ(1− z)
zα−β+1

dz

]

+O(1)
|y|β

nα−β

∫ 1

1
n

χ1(1− z)
zα−β

dz. (44)

Combining the results from (4.5),(4.9), (4.10) and using lemma 9, we get

J1 = O(1)
|y|β

nα−β

[∫ 1

1
n

χ(z)dz

zα−β+1
+

∫ 1

1
n

χ(1)− χ(1− z)
zα−β+1

dz

]

+O(1)
|y|β

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β
(45)



Journal of the Orissa Mathematical Society 35

We now proceed to deal with J2.

From (4.4) , we write

J2 =
1

2π

∫ δ

π
n

‖F (t)‖p
| tan t/2|

∣∣∣∣∫ 1

0
Rn(u, t)(sinnΘ− sinnut+ sinnut)dχ(u)

∣∣∣∣ dt
≤ 1

2π

∫ δ

π
n

‖F (t)‖p
| tan t/2|

∫ 1

0
{Rn(u, t) sin Θ− sinnut} dχ(u)

+
1

2π

∫ δ

π
n

‖F (t)‖p
| tan t/2|

∣∣∣∣∫ 1

0
Rn(u, t) sinnutdχ(u)

∣∣∣∣ dt
= J21 + J22 (say) (46)

Using Lemma 3, Lemma 4(ii) and Lemma 6(i) we get

J21 = O(1)|y|β
∫ δ

π
n

tα−β−1dt

∫ 1

0
e−cnu(1−u)t

2
.nu(1− u)t3.χ1(u)du

= O(1)|y|β
∫ 1

0
χ1(u)du

∫ δ

π
n

tα−β.e−cnu(1−u)t
2..nu(1− u)t3 dt

whence putting nu(1− u)t2 = θ and writing

U1 = π2u(1− u).n−1, U2 = δ2u(1− u)n,

we get

J21 = O(1)
|y|β

n
α−β+1

2

∫ 1

0

χ1(u)du

[u(1− u)]
α−β+1

2

∫ U2

U1

θ
α−β+1

2 .e−cθ.dθ

= O(1)
|y|β

n
α−β+1

2

[∫ 1
n

0
+

∫ 1− 1
n

1
n

+

∫ 1

1− 1
n

]
χ1(u)du

[u(1− u)]
α−β+1

2

∫ U2

U1

θ
α−β+1

2 .e−cθ.dθ

= L1 + L2 + L3 (say) (47)

Using first estimate of Lemma 8 ( taking k = 2 ), we get

L1 = O(1)|y|βχ
(

1

n

)
(48)

and L3 = O(1)|y|β
{
χ(1)− χ

(
1− 1

n

)}



36 Sangram Kesari Ray, G. Das and B.K.Ray

Using the second estimate of lemma 8 ( taking k = 2 ), we get

L2 = O(1)
|y|β

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β
(49)

collecting the estimates for L1, L2 and L3 we obtain from (4.13)

J21 = O(1)|y|β
[
χ

(
1

n

)
+

{
χ(1)− χ

(
1− 1

n

)}]
+O(1)

|y|β

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β
(50)

For t >
π

n
we write h =

π

nt
.

We now proceed to deal with J22

From (4.12), using Lemma 3, Lemma 11(i) and putting t = π/nz we obtain

J22 = O(1)|y|β
∫ δ

π
n

tα−β−1dt

[
χ
( π
nt

)
+
{
χ(1)− χ

(
1− π

nt

)}
+
χ1
(
1− π

nt

)
nt

]

= O(1)|y|β
∫ 1

π
δn

( π
nz

)α−β−1 [
χ(z) + {χ(1)− χ(1− z)}+ χ1(1− z).z

] dz
nz2

= O(1)
|y|β

nα−β

[∫ 1

1
n

χ(z)dz

zα−β+1
+

∫ 1

1
n

χ(1)− χ(1− z)
zα−β+1

dz

]

+O(1)
|y|β

nα−β
+

∫ 1

1
n

χ1(1− z)
zα−β

dz (51)

Combining (4.12) , (4.16), (4.17) and using Lemma 9, we get

J2 = O(1)
|y|β

nα−β

[∫ 1

1
n

χ(z)dz

zα−β+1
+

∫ 1

1
n

χ(1)− χ(1− z)
zα−β+1

]

+O(1)
|y|β

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β
(52)
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Collecting the estimates for I,K, J(J1, J2) using Lemma 9 and (4.1) we get

for 0 ≤ β < α ≤ 1

‖ln(x)− ln(x+ y)‖p

= O(1)
|y|β

nα−β

[∫ 1

1
n

χ(z)dz

zα−β+1
+

∫ 1

1
n

χ(1)− χ(1− z)
zα−β+1

dz

]

+O(1)
|y|β

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β

which further ensures that

= sup
y 6=0

‖ln(x)− ln(x+ y)‖p
|y|β

= O(1)
1

nα−β

[∫ 1

1
n

χ(z)dz

zα−β+1
+

∫ 1

1
n

χ(1)− χ(1− z)
zα−β+1

dz

]

+O(1)
1

nα−β

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α−β

Also ‖ϕx(t)‖p = O(tα) by hypothesis proceeding as above we obtain

‖ln(x)‖p = O(1)
1

nα

[∫ 1

1
n

χ(z)dz

zα+1
+

∫ 1

1
n

χ(1)− χ(1− z)
zα+1

dz

]
+O(1)

1

nα

∫ 1− 1
n

1
n

χ1(u)du

[u(1− u)]α

Collecting the estimates for sup
y 6=0

‖ln(x)− ln(x+ y)‖p
|y|β

and ‖ln(x)‖p

We obtain the result (2.1).

This completes the proof of the theorem.

5. Corollaries

In the special case when χ(t) = 1− (1− t)δ, 0 < δ ≤ 1 the Hausdorff mean

Hn(f(x), χ) reduces to familiar Cesaro mean Cδn(f, x) of the Fourier series and

hence we can verify that the following result follows from our theorem.
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Corollary 1 Let 0 ≤ β < α ≤ 1 and f ∈ H(α, p), p ≥ 1. Then

‖Cδn(f, x)− f(x)‖β,p = O(1)


1

nα−β
, 0 < α− β < δ ≤ 1

logn
nα−β

, 0 < α− β = δ = 1
1
nδ
, 0 < δ < α− β ≤ 1

The case p =∞ and δ = 1 includes Theorem A due to Prösdorff [9]. Putting

p =∞ and β = 0 in Corollary 1 we obtain

Corollary 2 ([1], P-301) If f ∈ Lipα, 0 < α ≤ 1, then

‖Cδn(f, x)− f(x)‖c = O(1)


1
nα , 0 < α < δ ≤ 1
logn
nα , 0 < α = δ = 1
1
nδ
, 0 < δ < α ≤ 1
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