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tion of functions by Housdorff means of their Fourier series generalizing some

known results in the literature.

Key words: Banach space, Holder metric, generalized Holder metric,
Hausdorff means, Fuler means, Cesaro means, degree of approximation

2000 Mathematics Classification 41A35, 40G05.

1. DEFINITIONS AND NOTATIONS

The sequence {py,} is said to be a moment sequence if

1
fn, = / " dx (u) (n=0,1,2,...) (1)
0
where x(u) is called the mass function of moments u, and is of bounded
variation in the closed interval [0, 1]. It is also supposed that x(0) = 0 and
1
Lo = / dx(u) = 1. The conditions for moment sequence imply x(1) = 1.
0

16
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Further if x(u) is continuous at the origin; that is

x(07) = x(0) =0
then x(u) is called a regular mass function and {u,} is called regular moment

oo

sequence. Let Zan be an infinite series and {s,} be the sequence of its
n=0

partial sums. Corresponding to a moment sequence {ju,} or a mass function

x(u), we write the sequence to sequence transformation by

=Y { 1 (1)t Fantan o @)

k=0
OR

n

=3 (1)@ s 3

k=0
where for n > 0, A%y, = pin; A pn = APy — pins1), P > 1.
o

The sequence {s,,} (or the series Z ay) is said to be Hausdorff summable to
n=0
s [4], [8] if lim ¢, = s; sequence {t,} is called Hausdorff mean of sequence

{Sn}. n—00

Let p = (pnk) and § = (O ) be triangular matrices defined respectively by

fnn = pn(n =0,1,2,...)

n

0,mn>m

(4)

Then the matrix A = §ud is called a Hausdorff matrix, if {u,} is a moment

sequence (or if x(u) is a mass function). Thus the Hausdorff matrix A = (a,x)

are given by

r Onmm-Omk, k< n
i = { ot Bt S (5)
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whence by use of (1.1) we get

1/ n—
nk —{ ({? (k) (1 = )" dx(w), L (6)

It is easily seen that if the mass function y(u) is continuous at the origin then
the Hausdorff matrix is regular. if the mass function x(u) = {1—(1—u)*}, o >
0,0 < u < 1, then p, = ("Za)_l and Hausdorff method reduces to familiar
Cesaro (C, o) method ( see Hardy [4] ). On the otherhand, if we take for ¢ > 0

0, when0<u< L
x(u) = { L

1
1, Whenl—ﬂgugl

then Hausdorff method reduces to familiar Euler’s method (see Hardy[4] )
Let f(t) be a periodic function of period 27 and integrable in the sense of

Lebesgue over [—7, w]. Let the Fourier series of f at t = z be given by
a o0

?0 + z:l(an cosnx + by, sinnx) (7)
n=

and Sy, (x) be the sequence of partial sums of the series (1.7). We write

_sin(n—l—%)t

Dult) = 2sint/2 ®)
pa(t) = {f(z +1) + f(z — 1) — 2f(x)} (9)

It is easily seen that
Sule) = @)= [ a0 Dalt)i (10)

As we are concerned with degree of approximation of functions by the Haus-
dorff mean of their Fourier series we write using(1.2) the Hausdorff mean of

the sequence

(50 s 0 = 3 { [ ()i - w0 an s o)
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using(1.10)

(), x) = Zj L ()t -t} {3 [ eaopuoar + s}
- kZO { 1 (7)o = wr -t {2 [ oDt} + £(e)

whence using the fact that

> /o <Z> uf (1= u)" Fdy(u) =1

[ (et oo 5 e

= ["eatt) (Z)Sm / 1u’“(l—u)’l—’“.dx(u)] it

- /0 " e () Ho (1)t (12)

dt

where

"\ /n\ sin 1 1
m =3 (}) et ka0

k=0
H,(t) is called the Hausdorff kernel.

By simple Computation we obtain from (1.13).

1 ! n n
H,(t) = 27r/0 R"(u,t) cosnOdx(u )+ Cot/ R"(u,t)sin nOdy(u ()14)

where R(u,t) = |1 — u + ue”|

usint
©O=tant — "~
1 —u+wucost

1 1
Again writing @, (t) = 2/ R"(u,t) cosnOdx(u) and
T Jo

1
Q(t) = 217T/0 R"(u,t)sinn©dx(u)
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We obtain from (1.14)

Hy(t) = Q;,(t) + Qp,(t) cot t/2 (15)
Further it is easy to see that

(1) H,(t) is an even function

and
™
(41) H,(t)dt =1 (16)
—T
Let Ca, denote the Banach space of all 27 periodic continuous functions under
sup-norm. For 0 < a < 1 and some positive constant K, the function space

H, is given by

Ho ={f € Con : [f(2) — f(y)| < K|z —y["} (17)

The space H, is a Banach space [9] with norm |.||, defined by

1flla = [lfllc +sup A*(f (2, y)) (18)
Ay

where || fllc = sup |f(z)]

—n<z<mw

a f z _’f Yy
and 8%(7(a.9) = PO I 2 2,
We shall use the convention that A°f(z,y) = 0. The metric induced by the

norm (1.18) is called a Holder metric. It can be seen that
1£lls < 2m)*P[Iflla, (0 < B < @ < 1) (19)

Thus {H,, ||.|lo} is a family of Banach spaces which decreases as « increases
that is
Cor 2 L&3;2}Ja (O <B<a< 1)

The space L,[0,27] when p = oo includes the space Ca, of all continuous

functions defined over [0, 27].
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We write
(% @) dt) g , =1
||f||p: f 2m |p dt, 0<p<l1 (20)
Ifllc, p=00
and
w®) = w(5.f) = sw 1@+m) = @) 1)
wp () = wy(6, f) = Sup, [f(z+h)— f(2)lp (22)
wi0) = uio.1) = sw W@ h)+J@ =) =20@ly 3

which are respectively called modulus of continuity, integral modulus of con-
tinuity and integral modulus of smoothness ( [14], p.42).

In the case 0 < ae < 1 and wy (0, f) = 0(6%). We write f € Lip(«, p). The case
«a > 1 is of no interest as in this case f turns out to be constant. The class
Lip(a, p) with P = oo will be taken as Lip .

Holder metric has been generalized in [3] as follows.

For 0 < o <1 write
H(a,p) ={f € Lp,0 <p<oo:|f(z+h)— flz)lp <klh"}

and define for f € H(a,p)

Hf(.%'-i-h) _f(x)HP (24)

fllap) = [ fllp +sup
17 ap = 171+ sup e

1fll0.0) = lIfllp-
It can be easily verified that (1.24) is a norm for p > 1 and a p-norm in the

case 0 < p < 1. Note that H(«, c0) is the familiar H, space introduced earlier
by Prossdorf [9].
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We write
Ep(u,t) = e (=0 (0 <y < 1), (0<t <) (25)
In(z) = Ha(f(z),x) — f(2) (26)
F(t) = aty(t) — 0a(t) (27)

f 1 to denote f is non decreasing

f | to denote f is non increasing .

2. INTRODUCTION AND STATEMENT OF THE THEOREM

Prossdorff [9] studied the degree of approximation in the Hélder metric and
proved the following theorem.

Theorem A[9] Let f € Hy(0<a<1l)and0<p<a<1

Then

15, = s =0 { 15001 4 oo, oot
where 6,,(f) is the Fejer mean of the Fourier series of f.
The case 8 = 0 is due to Alexists[1]. Chandra [2] obtained a generalization of
Theorem A in the Nérlund or (N, p,) transform and Reiesz transform set up
with regard to approximation of functions in L, norm the following theorem
is due to Quade.

Theorem B [10] Let f € Lip(a,p), (0 < a < 1). Then

n~% (p>1)
10.(f) = fllp=001) ¢ ™% (p=10<a<1)
PEL (p=1l,a=1)

n

With a view to generalise the above results in Norlund transformation set up
attempts were made by Sahaney and Rao[12], Chandra [2], Khan[6]. Moha-
patra and Russel [7]. Considered this in generalized Nérlund means set up.
With regard to the approximation of function in the generalised Hélder met-
ric by matrix mean see Das, Ghosh and Ray[3]. In 2001, Rhodes has studied

the degree of approximation of functions belonging to a certain weighted class
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by their Fourier series using Hausdorff means possessing mass function with

bounded derivatives.

The objective of the present paper is to study the approximation problems

by Hausdorff mean in the generalised Hélder metric.
We prove the following.
Theorem Let
(i) x(u) be absolutely continuous over interval (0, 1) .
(ii) x (u) be positive and non decreasing in (0,1)
(iii) f € H(o,p) and p > 1.
Thenfor 0 < g <a<1

1 poa—pB+1 ya—B+1

3. LEMMAS

To prove the theorem we use the following Lemmas.
Lemma 1 Let ln(z) = Hy(f(2),x) — f(z). If f € H(a,p),p > 1
Then

™

|zty — Pzllp| Hn(t)|dt, p>1
Hln(x + y) - ln(xwp S
[Pty — @allp| Hn(t)[Pdt, 0<p <1

Proof
Using (1.12) and (1.20) for p > 1

/1 x(e)dz / (1) = x(1—2) dz]

(28)
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and

P

et 9) = @l = |2 [ lale +2) ~ ()]

- [i [ da| [ toreatt) - a0} (01

whence by generalised Minkowski inequality we obtain

[ln(z +y) = ln(2)lp < /0 [ty = Pellp| Hn(t)|dt

In the case 0 < p < 1, we use modified generalised Minkowski inequality and

1
P]p

obtain the result.
This completes the proof.
Lemma 2 Let f € H(a,p),0 < a<1,0<p<o0. Then

o) = a0l =0 { e

Proof For P > 1 and using Minkowski’s inequality

([ |sox<t>|p.dx)’l’ < ([T - swpar) ’1’+( [Cie-n- f(a:)ypd:x)’l’

and for 0 < p < 1 we have the modified Minkowski type inequality

27 2T 27
| edoras < [Tise 0 - p@pde+ [ 1w =0 - o).
Thus the first order estimate follows.

For proving the second order estimate we first note that

Paty(t)—pa(t) = {f(@+y+t)—f(x4+0) }+{f (z+y—t) = f(x—1)} =2{f (z+y) - f(2)}
and then apply Minkowski’s inequality separately for p > 1 and for 0 < p < 1.
Lemma 3 Let f € H(a,p),0 <a<1,0<p<oo. Then

IE@)]lp = O@)lyl”.[t*~7.

Proof Using (1.27) and Lemma 2, we have
Pl = o {

£

[yl @)
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Writing || F(t)||, = ||F(t)||5/a||F( )Hl A2 and using the estimates in (3.1) we
obtain
IE @)l = OW)yl”.[¢]*~7

This completes the proof.
Lemma 4 [5] For 0<u<1,0<t<n
(i) R(u,t) = O(1)e~ (=0 (¢ > ()
(i) R™(u,t) = O(1)e~ 1wt (¢ > ()
(iii) Hp(t) = O(n)
(iv) Hy(t) = 0(1)% /0 1 e~ =0 gy () (> 0)
Lemma 5 [13] For small ¢t € (0, 7) and fixed Jp

0 = ut + Au(l — u)t3

where |A| < dp.

Lemma 6 For small ¢ € (0,7)

(i) sinn® — sinnut = O(1)nu(l — u)t3.
(ii) cosn® — cosnut = O(1)nu(l — u)t3.
Proof of (i)

© t © — nut
| sin n©—sin nut| = |2 cos o Jgnu ,sin r n | < n|O@—ut| = O(1)nu(1—t)t* [by Lemma 5]

Hence the proof.

We omit the proof of (ii) as it can be proved by using arguments similar to
those used in proving lemma 6(i).

Lemma 7For0<f<land0<u<1

1 1

e—cnu(l—u) = O( )n5 |:(U(1 — u)tQ)ﬁ] (C > 0)

Proof We have
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Writing Ep (u,t) = [Ep(u,t)]' ™7 . [E,(u,t)]? and using (3.2) and (3.3) we get

En(u,t) > [enu(l — u)t?)? (32)
—cnu(l—u)t? _ 1 _ 1 1
= = gy = Wi [(a(l = u)t?)ﬁ] |

This completes the proof of the Lemma.

Lemma 8 For 0 < a<1,0<u<1,ke N,C>0and 0< 3 < «

Us htop k+a—_ ‘ 1 _ k+a—_
0552 o=b gg — oy ", 2l —wl
U n— 2z u(l—u)] 2

where

Uy = 72u(l —u)n™t, Uy = 6%u(l — u)n
and 90 is a fixed number between 0 and 7 .
Proof :We have

Uz o k+a—8 Uz
95 O gp < U, 2 / e~ .dp
U1 Ul
k+a—p8 o 0
<U, * . —0 49
0
k+a—p
=o(U, *?
= 05 Ju(l — u)] 75 (33)
Again
U. U.
/ 29k+376.6_60.d9: 29’“*‘;”‘9&_&‘6_69‘6”
U1 Ul
k—a+p 8]
=U, ° / 078 e~ dp
Ui
k—a+8
:O(1>U2 2
— 0 5 Ju(l —w)] (34)

Proof of the lemma follows from (3.5) and (3.6) .
Lemma 9 Let

(i) x(u) be absolutely continuous over interval (0, 1).
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(ii) x (u) be positive in (0,1) .
Thenfor 0 < g <a<1

(1) =onts [ XY,

1 _ —
@wﬂm—x@—1>20mm3@ﬂxmw§$ w@/

n

o1 1y 1 [x()—x(1-y
(i) na/1 ( )dy:O(l)nag/l ()yaﬁ(ﬂ )dy

ye-

Proof (i) We have

1 [ x'(y) dy
ne=B J1 yo-

1 P@ql+a—ﬁ ' x(y)dy

ne— B ya B ne B ya—ﬂ"rl

7’L

1
_ 1y a5 x(y)dy
- R n na B ya—,B—l—l

whence we get

IN_ 1 a=8[xdy 1 ['X'W),
X\n) TneB T a8 |1 yaBH  popB [, ya-B Y

1 [ x(y)dy
_O(l)naﬁ/1 ya—6+1dy

(since x!(u) is positive )

This completes the proof of Lemma 9(i) . We omit the proof of Lemma 9(ii)
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and Lemma 9 (iii) as it can be proved by using the relation
1 X' —y)dy

no—>b J1 yo—B

1 a—p 1MD—xﬂ—wd

na—p + na—>3 % ya75+1 Yy

arguments similar to those used in proving Lemma 9 (i) .
Lemma 10 For fixed ¢t € (0,7) and u € [0,1] , Let

(a) x(u) be absolutely continuous over interval (0, 1)
(b) x*(u) be positive

Then

1
/ e—cnu(l—u)t2 dx(u)
0

o b (3o
+0(1)na1_6 /ll_i [u(’fl_(% 0<B<a<l1,C>0)

Proof We write

1
/ e —cnu(1—u)t? dX(

e e

:K1+K2+K3 (say)

Using the fact that e—enu(l-u)t? < 1 for k1 and k3
We obtain

1

ki< ["ax(w = o0 ()
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Using Lemma 7 for K5 , we obtain

Ky = O(1)— /11_" [(XlW)du

no—>~ w(l —u)]je=p

Collecting the estimates for K7, K3 and K9 we obtain the result .

Lemma 11 For t > il and h = 1, let
n nt
(a) x(u) be absolutely continuous over interval (0,1) .
(b) x'(u) be positive and x 1 in (0,1)
Then

/ (u) B (u, £) sim nutdu
o [x(57) { m=x(1- )}

(* ?)

Proof of (i) We write

1
(1) / X! (u) R (u, t) sin nutdu

[/ / h /1 ,J u)R" (u, t) sin nutdu

= My + My + M3 (say)

AS |R"(u,t) sinnut| < 1, we getM; and Mz we get

™

My = 0(1)x (= )

nt

andMsz = O(1) [x(l) —X (1 B %ﬂ

29
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1
Again if h = 1 < — we write
nt 2

1-h
My = / / ] u)R™(u, t) sin nut du
= Moy + Mo (say)
Incase h =[5 > 2, we need not split the integral Ms .

1 1
Case 1 Forh:—<fwehaveforh<§<n<f
nt 2 2

1

My = /2 x! () R™ (u, t) sin nutdu

| |
/‘\
[a—

sm nutdu

) (u, t) sin nutdu

1 /
andf0r§<§ <1l-h

1-h
Moy = / X (u) R™(u, t) sin nutdu

N

1-h
=x'(1—h)R"(1 — h,t)/ sin nutdu

1

o =h) o) (Xl L ’;)>

nt nt

(since x' 1, R™(u,t) | for0<u<i and x'1, R"(u,t) 1 for 3 <u<1)

Hence collecting the estimates for Ms; and Mso we obtain

Moy + Moz = O(1) (Xl 2= gt))

nt
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1
Case II For h = % > 5 Ve have the single integral
n

1-h
Mgz/ X (u) R™(u, t) sin nutdu
h

= 0(1) (Xl (1n; th))

From case (I and II) , we get

M, = 0(1) (Xl (- :Lrt)>

Collecting the estimates for M7, M3 and My we obtain the result .
We omit the proof of Lemma 11(ii) as it can be proved by using arguments

similar to those used in proving lemma 11(i) .

4. PROOF OF THE THEOREM

Using Lemma 1 and (1.27) we have

() — Lo + )llp < /0 loelt) — @ary(®)lplldt
-/ CIE@ | Hat)] dt

[///

=1+J+ K (say) (35)

1E @) Hn(t)] dt

Using Lemma 3 and Lemma 4 (iii) , we get

w/n
I= O(n).]y|ﬁ/0 =P dt

ly|?
no—>
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Since x(u) is absolutely continuous over (0,1) and x!, is positive, using Lemma

3, Lemma 4 (iv) and Lemma 10 we get

" ta_ﬁ ! —cnu(l—u
kol [ E- ] [emimrta fa
1 " jap 2
= O(l)|y|ﬁ/ XI(U)du{/ Tefcnu(lfu)t dt}
0 )

1
=0 [ ¥ (w0

— oW)ly? [X (i) 4 {x(l) ~x (1 - i) }]

-1 L) du
e (37)

a—p3

[ Since e~"(1=%% | in ¢ and € L(s,m)

Using (1.5) we have

5 .
J= / IE@ILIQL) + Q1 (¢) cot t/2]dt
"5 )
< / V()11 QL (0)]de + / | F(0)l1,| @ (1)]] cot t/21dt

1
/ R"(u,t) cosn©dx(u)| dt

1
R"(u, t) sin nOdyx (u)

*IIF( )lp

+/ SELLA

=Ji+J2 (say) (38)
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We write

1 1
h=ge [ 1P,

1 1) 1
- / 12018 / |R™ (1, £) (cos n® — cos nut)dy (u)|
I s 0

1
/ R"™(u,t)(cosn® — cos nut + cosnut)dx (u)|dt
0

1 [ 1
+ o / | F(t)]|pdt '/ R"(u,t) cos nutdy (u)
™ )= 0

= J11 + J12 (say) (39)

Using Lemma 3 , Lemma 4(ii) and Lemma 6(ii), we get
1 0 9
Ji1 = O(l)\y[ﬁ/ Xl(u)du/ 0B emenu=wt gy (1 — u)t3.dt
0 ™

whence putting nu(l — u)t? = 6 and writing , U; = 72u(l —u).n=1, Uy =

8?u(l —u).n
We get
B 1 Yw)du V2 5iap
J11 = 0(1) 2’%(‘1 3 / X ( ) P} / 0 =2 —cf do
n- 2 0 [u(l—u)] = U
B L 1-1 1 Lw)d Us N
+o(1) ELB / + +/ X () s / 075 o= g
n= 2 0 1 =2 ] [u(l —u)] 2 Ui
=l +la+13 (say) (40)

Using first estimate of lemma 8 ( taking k =2 ), we get

L = 0()lylx (1)

n

and 13 = 0y {x( - x (1- 1) (41)

n
Using second estimate of Lemma 8 ( taking k = 2), we get
g i1 1

no=>8 J1 [u(l —u)]o—F

n
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Collecting the estimates for 1,2 and l3 we obtain

I =0()lyl? [x (i) + {X<1> X (1 } i) H

B 17% Y w)du

T T
For t > — we write h = —

n nt
Now we proceed to deal with Jio

. From (4.5) , using Lemma 3 and lemma
11 (ii) we get

4

J12 = 0(1)ylﬂ/w t*~ [X (%) + {x(l) —-X (1 - 1) H L)

n

. ™ .
whence putting ¢ = — we obtain
nz

1 o »
Jiz = Oy’ /ﬂ (%) ’ [x(2) +{x(1) = x(A1 = 2)} +x' (1 — 2).2] . d

on

B L' y(2)dz Ly(1) = x(1 -z
e

sa—B+2

nz2

n

ro-0 /11 x0-2,

n

+ 0(1) ‘y|IB /1 Xl(l — Z)

na—>

na—Bt1 |, sa-pr1 ¥F
_ wl? | [t x(z)dz P x(1) = x(1—2)
= O(l)norﬁ | pa—g + s g dz

yr=: dz. (44)

Combining the results from (4.5),(4.9), (4.10) and using lemma 9, we get

B L yv(2)dz Ly() = x(1 =2z
J1_0(1)T1§‘_5 [/1 Zf_%HJr/lx( )Za_xﬁ(+1 )dZ]

n

n

B 1_% Yw)du
+O(1)Tli‘_ﬁ/l [U(T—(li;i]a_ﬂ (45)
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We now proceed to deal with Js.
From (4.4) , we write

> IE@
= |tant/2|

(5
F
<5 ,”H/”m H e s

5M / R"(u,t) sin nutdyx(u)
]tant/2|

= Jo —|— Jao  (say) (46)

1 1
Jp = — / R™(u,t)(sinn® — sinnut + sin nut)dy(u)| dt

dt

Using Lemma 3, Lemma 4(ii) and Lemma 6(i) we get

0 1
Jo1 = O(l)|y\6/ to"Bldt/ efcnu(lfu)tQ.nu(l —w)t® x(w)du
z 0

1 é
—O(l)ly\ﬁ/ xl(U)du/ 08 gm0t (1 — w)t® dt
0

n

whence putting nu(1 — u)t? = 6 and writing

Uy = m?u(l —u).n™, Uy = 6%u(l — u)n,

=11+ Lo+ Lg (say) (47)

Using first estimate of Lemma 8 ( taking k = 2 ), we get

L= ol () (48)

and 2y = o)l {x( - x (1- 1)}
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Using the second estimate of lemma 8 ( taking k = 2 ), we get

B 1-3 Yu)du
Lo — 0(1)7l§|_ﬁ/1 M (49)

collecting the estimates for Ly, Lo and L3 we obtain from (4.13)

Jor = O(1)|y|? [x <i> * {X(” X <1 ) i) H

B 1_% Yw)du

T T
For t > — we write h = — .
n n
We now proceed to deal with Joo

From (4.12), using Lemma 3, Lemma 11(i) and putting ¢ = 7/nz we obtain

=0t [/ au(Z) e+ 5))+ )

1, o\ a—f— 2

oy’ [ ()" o)+ )~ x(1 - ) - )
B Ly (2)dz Y x(1) — x(1 -2

~ o W’ [ [ [ >dZ]

+0(1)Ai’_ﬁﬁ +/11X1;_—52) dz (51)

n

Combining (4.12) , (4.16), (4.17) and using Lemma 9, we get

B L y(2)dz L) = x(1 -z
O P R U ESCERY

n

B 1_% Yuw)du

n
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Collecting the estimates for I, K, J(J1, J2) using Lemma 9 and (4.1) we get
for0<f<a<l

1l (2) = ln(z +y)lp

B 1 1 _ —
ly| x(z)dz [ x(1) —x(—2)
nOé_B 1 204_54‘1 1 Za_ﬁ'i‘l

yl® [ X (w)du
oW f, T e

= o(1)

which further ensures that

In(x) — 1y
s I12() ~ e+ )1

y#0 ‘y|ﬂ
1 Px(z)dz [P x(@) = x(1 - 2)
= O(l)nafﬂ [/1 La—Bt1 +/1 La—Bt1 dz

1 -3 L(w)du
o0 [, - ap

Also |[|¢.(t)|l, = O(t*) by hypothesis proceeding as above we obtain

Yx(2)dz ! - —Z oy (w)du
lta(a)l, = O(1) [ [y [y o) L [T X

n

n n

ln - ln
Collecting the estimates for sup [t () ém +9)llp
y#0 |y|
We obtain the result (2.1).

and |[ln ()]l

This completes the proof of the theorem.

5. COROLLARIES

In the special case when y(t) =1 — (1 —)?,0 < 6 < 1 the Hausdorff mean
H,(f(x),x) reduces to familiar Cesaro mean C?(f, ) of the Fourier series and

hence we can verify that the following result follows from our theorem.
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Corollary 1 Let 0 < < a<1and f € H(a,p),p > 1. Then

na%ﬂ, O<a—p<d6<1
pp=01)¢ &% g<a-f=5=1
%, O<d<a-—p<1

IC(f.2) — f(x)]

The case p = 0o and 6 = 1 includes Theorem A due to Prosdorff [9]. Putting

p =00 and = 0 in Corollary 1 we obtain

Corollary 2 ([1], P-301) If f € Lipa,0 < a < 1, then

8]

[9]

L 0<a<dé<l1

IC3(f,2) — f(@)]l = O(1) 1; O<ca=d=1
Y 0<d<a<l

REFERENCES
Alexists . G . : Convergence Problems of orthogonal series , Pergamon Press, Newyork
1961 .
Chandra, P : ”On the generalised Fejér means in the metric of Holder space” Math.

Nachar, 109 (1982) , 39-45 .

Das. G, Ghosh, T and Ray.B.K : Degree of approximation of functions by their Fourier
series in the generalised Holder metric, Proc. Indian Acad. Sc. Math.Soc 106 (2) (1996)
139-153 .

Hardy, G.H : Divergent Series, Oxford 1956.

Hille , E and Tamarkin J.D : On the summability of Fourier series III, Mathematics
che-Annalen 108 (1933) 525-577 .

Khan, H.H : On the degree of approzimation of functions belonging to class Lip(a,p).
Indian . Jour. Pure and Appl .math 5 (1974) 132-136 .

Mohapatra R.N. and Russel D.C : Some direct and inverse theorems in approximation of
functions Jour.Anstralian.math.soc.series (A) 34 (1983) 143-154 .

Peter sen, Gordon M : Regular matriz transformations, Mc Graw-Hill Publishing com-
pany , London, 1966 .

Prosdorft .S ; Zur Konvergenz des Fourier reifien Holder Stetiger Funkt ionen math |
Nachar - 69 (1975) 7-14 .

[10] Quade E.S : Trigonometric approzimation in the mean Duke math. Jour. 3 (1937) 529

-543 .

[11] Rhodes B.E. : On the degree of approzimation of functions belonging to the weighted

(LP,&(t)) class by Hausdorff means, Tamkang J.Math 32(4)(2001), 305-314.

[12] Sahaney, B.N and Rao V.V.G : Error bounds in the approximation of functions.

Bull. Australian Math.Soc. 6 (1972), 11-18 .

[13] Szasz . O : Gibbs phenomenon for Hausdorff means, Trans.Amer . Math.Soc. 69

(1950),440-456 .

[14] Zygmund. A : Trigonometric seriesVol.1 ., Cambridge University Press , Newyork, 1956.



