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Abstract

The goal of this paper is to characterize the matrix transformations and is

related to the concept of invariant mean and the lacunary sequence.
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1. INTRODUCTION AND PRELIMINARIES

We shall write w for the set of all complex sequences x = (x})32,. Let
¢, l, c and ¢y denote the sets of all finite, bounded, convergent and null se-
quences respectively. We write [, = {z € w : ) ° |zp| < oo} for 1 < p < o0.
We denote the sequences e = (1,1, 1, .....) and " = (0,0,0, ..., 1(nthplace), 0, ...).
For any sequence x = ()72, we denote the n-section by z = Yo zre®).
Note that I, c and ¢y Banach spaces with the sup-norm ||z||oc = supy, ||,
and [P(1 < p < oo) are Banach spaces with the norm ||z||, = (3 |z[?)"/?;
while ¢ is not a Banach space with respect to any norm.

Schaefer [25] has defined the concepts of o-conservative, o-regular and o-
coercive matrices and characterized matrix classes (c, V5 ), (¢, Vi )reg and (loo, Vi),

where V,; denote the set of all bounded sequences all of whose invariant means
61
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(or o-means) are equal. Recently, in [9] and [10], Mursaleen characterized
some matrix classes by using de la Valée-poussin and invariant mean. Ma-
trix transformations between sequence spaces have been discussed by Savas
and Mursaleen [23], Basarir and Savag [2], Nanda [12], Nanda and Bilgin [13],
Vatan [5], Vatan and Simsek [6], Savag ([16], [17], [18], [19], [20],[21] ) and

many others.

Let o be a mapping of the set of positive integers into itself. A continuous
linear functional ¢ on [, the space of real bounded sequences, is said to be an
invariant mean or a o-mean if and only if (1)¢(x) >0 when the sequence z =
(zn,) has z, >0 for all n, (2) ¢(e)=1, where e=(1,1,...) and (3) ¢(z(co(n))) =
¢(x) for all z € l. Throughout the paper, for typographical convenience we
shall use the notation z(o(n))) to denote z,(n).

The mappings o are one-to-one and such that ¢™(n) # n, for all positive
integers n and m, where 0™ (n) denotes the mth iterate of the mappings o at
n. Thus o-extends the limit functional on ¢, the space of convergent sequences,
in the sense that ¢(z) = limz for all x € ¢. Consequently, ¢ C V,, where V}; is
the set of bounded sequence all of whose o-means are equal.

In case o is the translation mapping n — n+1, a o-mean is often called a
Banach limit (see, [1]) and V; is the set of almost convergent sequences.

If x = (), set Tx = (Txy,) = (x(o(n))). It can be shown(see, [25])

Vo ={x €l : limty,(z) = L, wuniformly in n, L=o—Ilimx}..
(1.1)

where

() = ——= " a(o*(n).

k=0
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and t_1,n(x) = 0.
The special case of (1.1) in which o(n) = n + 1 was given by Lorentz [7].

By a lacunary § = (k.); r = 0,1,2,... where kg = 0, we shall mean an
increasing sequence of non-negative integers with k, — k,_1 — oo as r — oo.
The intervals determined by 6 will be denoted by I, = (ky—1,k;] and h, =
k, — kr—1. The ratio kfil will be denoted by g,. Freedman at al [4] defined

the space of lacunary strongly convergent sequences Ny as follows:

1
No =1 x=(xp): hmh;\xk—le\)zo, for some [

There is a strong connection between Ny and the space w of strongly Cesaro

summable sequences which is defined by Maddox [8] as follows;

1
w = {$ = (xg) : h}znnkz_o |z — le|) = 0, for some l} .
In the special case where § = (2"), we have Ny = 0.

Quite recently, concept of lacunary o-convergent was introduced and studied
by Savas [22] which is a generalization of the idea of lacunary almost conver-
gence due to Das and Mishra [3]. If z € VY denotes the set of all lacunary

o-convergent sequences, then Savas [22] defined
vi=Sz= hm — Z — L) =0, for someL, uniformly in n

e
" kel

Note that for o(n) = n + 1, the space V? is the same as ACy. We write
V= V6 whenever L = 0.Then,

V2(0) :={z €l : sup |tyn(z) < 00},

rn
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where

" kel
If = 2" and o(n) = n+ 1, then V°(0) is reduced to the set f defined by

Nanda [11].

Just as boundedness is related to convergence, it is quite natural to expect
that the sequence space V°(0) is related to o— convergence. But we observe
that this concept coincide with l,. To prove this let € V>°(f). Then there
is a constant M > 0 such that

—|:c( Ln |<sup—Z|x n))| <M
" kel,
for all n and so =z € l,. Conversely, let x € l. Then there is a constant
M > 0 such that |acj| < M for all j and so
— Z lz(o®(n))] < M Y 1<M
" kel, " kel
for all r and n and so z € V°(0). Therefore V., °(0) = lo.

The space V,;(0) is BK spaces with the norm [|z|| = sup,., [t:n(z)]. In this
paper we characterize matrix classes by using lacunary sequence space such
as (I, V2°(0)) and (1, Vi (0)).

2. MAIN RESULTS

Let X and Y be two sequence spaces, B = (byk);,—; be an infinite matrix
of real or complex numbers and B, = (bnk),;“;l be the sequence in the n-th
row of B. We write Bx = B, (), where By,(z) = >, bprx), provided that
the series on the right converges for each n. If = (x;) € X, implies that
Bz € Y, then we say that A defines a matrix transformation fromX into Y

and by (X,Y) we denote the class of such matrices, that is, B € (X,Y) if and
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only if B,, € XP for all n and Bz € Y for all z € X.
Let Bx be defined. Then, for all r,n, we write

o0
tnr(Bz) = Y t(n,k,r)xy
k=1

where

t(n, k,r) Zb

zGIT
and b(n, k) denotes the element b, of the matrix B.

Let X (p) denote the set of all sequences = = (z) such that the following

norms are finite:

/1 |P

T

1/p
} , for 1 <p<oo

1z ]x (p) = {Z

and
”mHX(oo) = Sup{ ZE; 182> O}a
where
k
T4 —QSSHp{ le ;22 <k < 2”1}.
i=2s

To simplify our presentation we shall confine ourselves to 1 < p < co.
Next let Y(¢) denote the set of all sequences y = (yx) such that the following

norms are finite;

lzlly(q) = {Z !y;|q}1/q, for 1 < ¢ < o0
s=0

where

ys = 2°{ Z [k = Yr+1] + |yas+1 1|}
25—k<25+1-1
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The cases where ¢ = 1 and ¢ = oo are similar. In what follows we shall

always assume 1% + % =1

We now obtain the following theorem

Theorem 2.1. A € (X(p),V,(9)) if and only if
(1) M = sup{[|b(n, k,7)i=1ly(g;m = 1} < o0, and
(i) lim,b(n,k,r) = ap uniformly in n, (k fized)

Proof. The necessity is open. To prove the sufficiency given x € X (p) we want
to show that Az belongs to V(). First we observe that a = (ay) € Y (q) and
llally(q) < M where M is the constant. Since z € X(p) for any given € > 0,

we can choose rg such that

s ’ g
{ > o< —.
s=so+1 AM

Then we can find that for sufficiently large n

S 00 r) = e
k=1

< ’ Z ’ Z(b(n, kyr) — ak)xk‘
s=0 s
S0 00
< Z Z(b(n, k,r)— ozk)xk) + Z ‘ Z(b(n, k,r) — ag)xy
s=0 s s=sp+1 s
€ €
< B + QM.W
= €

Hence the proof is completed.

Let us denote v the space of sequences of bounded variation, that is
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U:{x:Z]xk—xk,l < oo, x9 = 0}
k

v is a Banach space normed by ||z|| = > | zx — k1
k

We have
Theorem 2.2. A € (v,V,(0) if and only if
(i)

(o @]
M = sup,| Zb(n,k‘,r)| <oo,t,n=1,2,...
k=t

(ii) there exists an o € C' such that

limy, Z b(n,k,r) = «,
k

uniformly in n ,
and
(111) there exists an oy € C(k =0,1,2,...) such that

lim,b(n, k,r) = ay,

uniformly in n.

Proof. Suppose that B € (v,V,(6)). This implies that Bz € V,(0) for x € v.
Since V;(0) C loo,
Bz € l+ and hence (i) holds. Define e, = (0,0, ..., 0, 1(kth place), 0, ...)and e =

(1,1,...). Since ey, and e are in v , (ii) and (iii) must hold.
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Conversely, suppose that the conditions (i) - (iii) hold and x € v. Since v C

¢, therefore z, — ¢. Now

Z ‘b(n,k,r)a:k‘ < Z |z — xk,1|‘ ib(n,k,r)’ —1—4 Zb(n,k,r)’.
k k k=1 k

By (i) and (iii) we get for each r,

t
supt) Z b(n, k:,r)‘ < 0.
k=1
Therefore t,,,(Bx) exists for each n and x € v. Also ) agxy exists for each

x € v. For given € > 0, choose and fix ky € Z* such that

Z ‘:I}k — xkfl‘ < 8/4M.
k=ko+1
We have

‘tnr(B$) - Zakxk - EZ(b(nv k’,?") - Oék)| <h+1I
k k

where
ko

L = Z i(b(n, k,r)— ak)Ha:k — Tp1
k =

=1 k=1

)

and

t
I < SUpt‘ Z(b(nv k.r) — Oélc)‘ Z [Tk — Tp-1-

k=1 k=ko+1

By virtue of condition (iii) there exists an integer n, > 0 such that I; <
e/2 for n >n, . Clearly Iy < /2. Further by virtue of condition (ii) we

have for n > n,,
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tyr(Bzx) — Z agxy — l(a — Z ak)) < g
k k
therefore we have uniformly in n,

limyt,,(Bx) = bo + Z ag(zy — 1),
k

so that Bz € V,(f) and this completes proof. O

We write (v, V;(0), P) to denote the subset of (v,V;(6)) such that A is
almost lacunary convergent to the limit of x in v.
We know consider the class (v, V;(6), P).

Theorem 2.3. A € (v,V,(0), P) if and only if
(iv) the condition (i) of Theorem 2.2 holds
(v) lim,. Y b(n, k,7) = 1, uniformly in n ,

and

(vi) limyb(n, k,r) = 0, for each k uniformly in n.

Proof. Let B € (v,V5(0), P). Then conditions hold by theorem 2.2. Let the
conditions (i)-(iii) hold. Then by Theorem 2.2., B € (v, V,(6)) and

lim, Z b(n,k,r)xy =,
k

uniformly in n.

This completes the proof. O

The following sequence space has been defined in [15].

Let X, (1 < p < 00) be the space of all z € X with

S Pip
lally = (D2 |- Do )
n=1 k=1

for 1 <p < .
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It is easy to see that X,(1 < p < 00) is a Banach space of nonabsolute type
and the above norm is saturated except for p = 1,( see, [15]).
Let Y, be the space of all y €Y such that

(a) |kyk| < M for all k =1,2,...

0o 1/q
(b) agy) = (S5 b — )l ) < oofor 1< < o0
and  aoo(y) = sup{lk(yr — yr+1)|;k=1,2,...} < occ.

The following theorem is due to Ng [14].

Theorem 2.4. The associate space Xp/ of X, is the space Y, with the norm

oy, where % + % =1.
We need the following lemma is due to [15] for the proof of the next theorem.

Lemma 2.1. A matriz A transforms a BK- space E into a BK- space F

then the transformation is linear and continuous.
We now have

Theorem 2.5. An infinite matriz B € (Xp, V(0)) if and only if B satisfies
the following conditions :
(7’) SUPnr ||{k(b(nv ka T) - b(nv k+ 17T))}k21”q < oo,

(ii)  supy |kb(n,k,r)| < oo for every fized n,r,
(iii)  limyk(b(n,k,r)—b(n,k+1,7)) = di,uniformly in n, for every fized k,

1, 1 _
where;—i—g—l.

Proof. First we prove that the conditions are necessary . Suppose B = (by)

maps X, into V,(6), then the series
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tnr(Bx) = ankr

is convergent for every n,r and for every x € X,. Then Theorem 2.4 the
sequence (b(n,k,r))ris an element in Y; for every n,r. It follows that the

condition (ii) holds and

I{k(b(n, k,7) —b(n,k+ 1,7)) }i>1] < oo.

Since X, and V,,(#) are BK-spaces therefore by Lemma 2.1, we have

[tnr (Bz)|| < K ||z,
for some real constant K, and all x € X, or
Supnr [tn,r (Bz)| < K ||s]

for all z € X, with s = (s;) where

w \

It follows that

< K.

0 — 1
sup Y oreq k(b(n, k,r) —b(n,k+1,7))sg

nr Il

Hence we have
supp,r [[{k(b(n, k,7) —b(n, k +1,7)) be>1| < K.

Therefore the condition (i) holds. To prove the condition (iii) is necessary
. We take for each fixed k, a sequence z(*) in X, with xg-k) =k, if j =k, —k
if j=k+1,=0,if j # k,k+ 1. Then we see that

1k
SR
k=

and s; = 0 if j # k. For this %) we have,
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trn(Be®) = 3" b(n, j, r)z " Z] (n,j,r) = b(n,j +1,7))s;
7=1
= k‘(b(n,k,r) - (b(na k+ ]_,’I“) — 6k

as r — 0o, uniformly in 7. This shows that condition (ii) is necessary.
Conversely, suppose the conditions (i), (ii) and (iii) hold. Then by condi-

tions (i) and (ii) the series

tyn(Bx) Zb (n,k,r)
is convergent for every n,r and = € Xp. By the condition (iii) we have
|k(b(n, k,r) —b(n,k+1,7))|* — ||6k]?

as r — oo uniformly in n and since for every positive integer p

p 1/q [ 1/q
{Z |k(b(n, k,r) —b(n, k + 1,7«)>\q} < Suppr {Z |k(b(n, k,r) —b(n, k + 1,7"))|q}

k=1 k=1

by letting » — co we get

p 1/q P 1/q
{Z‘(gkq} < Supr,n{z’k(b(nak)r)_b(nak'i_lar))‘q} .
k=1

k=1

Since this true for every positive integer p , it follows that

P 1/q
{Zékl"} < .
k=1

Now for every sequence x € X, we have
n
1
n = § Tk
n
k=1

as n — 0o. Given any € > 0, there exists N > 0 such that
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o8] 1/p c
> |5k|p} <=
{kN' 4B
And by condition (iii) there exists integer N7 such that

N

> {k(b(n, k,r) = b(n, k + 1,7) — 6k)} s
k=1

for all » > Ni. Now for all r > Ny,

9
<§,

o) N
> " {k(b(n k) = b(n,k +1,7) — 6)} 5| <
k=1

k=1

> (k. k) = b(n, k4 1,7) = 6k)} s

D> {k((b(n, k) = b(n, k+1,7) — 6;)} sk

_|_
k=N+1
€ > 1/q 1/p
<t (X R0k bk L) ) (DD TP
k=N-+1
3
S 198 - —
< =+ B4ﬂ €

So we have

[e.e] o0
limg Y k(b(n, k,r) = b(n, k+ 1,1) — 6)sk = »_ Spsi
k=1 k=1

uniformly in n. It follows that

limyt,,(Bx) = limTZb(n,k,r)xk
k=1

= lim, Z k(b(n,k,r) —b(n,k+1,r))sk
k=1

o0
- Y
k=1

uniformly in n. This show that Bz € V;(6) and B = (b,) maps X, (1 <p <
o0) into V(@) . This completes the proof. O
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Corollary 2.1. A matriz transformation B = (byy) maps the space X, into

the space V,(0)o if and only if

(i) the conditions (i ) and (i ) of Theorem 2.5 hold, b (i) lim,k(b(n, k,r)—

b(n,k+ 1,7)) = 0, uniformly in n, for every fized k, where % + % =1.
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