

On Sequence Spaces and Some Matrix Transformations

by

Rabia Savaş

Department of Mathematics, Sakarya University, Sakarya, Turkey

e-mail : rabiasavass@hotmail.com

Abstract

The goal of this paper is to characterize the matrix transformations and is related to the concept of invariant mean and the lacunary sequence.

Key words: lacunary sequence, sequence space, invariant means, matrix transformations.

AMS Classification: 40F02, 40G06

1. INTRODUCTION AND PRELIMINARIES

We shall write w for the set of all complex sequences $x = (x_k)_{k=0}^{\infty}$. Let ϕ, l_{∞}, c and c_0 denote the sets of all finite, bounded, convergent and null sequences respectively. We write $l_p = \{x \in w : \sum_0^{\infty} |x_p| < \infty\}$ for $1 \leq p < \infty$. We denote the sequences $e = (1, 1, 1, \dots)$ and $e^n = (0, 0, 0, \dots, 1(nthplace), 0, \dots)$. For any sequence $x = (x_k)_{k=0}^{\infty}$, we denote the n -section by $x^{[n]} = \sum_{k=0}^n x_k e^{(k)}$. Note that l_{∞}, c and c_0 Banach spaces with the sup-norm $\|x\|_{\infty} = \sup_k |x_k|$, and $l^p (1 \leq p < \infty)$ are Banach spaces with the norm $\|x\|_p = (\sum |x_k|^p)^{1/p}$; while ϕ is not a Banach space with respect to any norm.

Schaefer [25] has defined the concepts of σ -conservative, σ -regular and σ -coercive matrices and characterized matrix classes (c, V_{σ}) , $(c, V_{\sigma})_{reg}$ and (l_{∞}, V_{σ}) , where V_{σ} denote the set of all bounded sequences all of whose invariant means

(or σ -means) are equal. Recently, in [9] and [10], Mursaleen characterized some matrix classes by using de la Valée-poussin and invariant mean. Matrix transformations between sequence spaces have been discussed by Savaş and Mursaleen [23], Başarır and Savaş [2], Nanda [12], Nanda and Bilgin [13], Vatan [5], Vatan and Simşek [6], Savaş ([16], [17], [18], [19], [20], [21]) and many others.

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on l_∞ , the space of real bounded sequences, is said to be an invariant mean or a σ -mean if and only if (1) $\phi(x) \geq 0$ when the sequence $x = (x_n)$ has $x_n \geq 0$ for all n , (2) $\phi(e) = 1$, where $e = (1, 1, \dots)$ and (3) $\phi(x(\sigma(n))) = \phi(x)$ for all $x \in l_\infty$. Throughout the paper, for typographical convenience we shall use the notation $x(\sigma(n))$ to denote $x_\sigma(n)$.

The mappings σ are one-to-one and such that $\sigma^m(n) \neq n$, for all positive integers n and m , where $\sigma^m(n)$ denotes the m th iterate of the mappings σ at n . Thus σ -extends the limit functional on c , the space of convergent sequences, in the sense that $\phi(x) = \lim x$ for all $x \in c$. Consequently, $c \subset V_\sigma$ where V_σ is the set of bounded sequence all of whose σ -means are equal.

In case σ is the translation mapping $n \rightarrow n+1$, a σ -mean is often called a Banach limit (see, [1]) and V_σ is the set of almost convergent sequences.

If $x = (x_n)$, set $Tx = (Tx_n) = (x(\sigma(n)))$. It can be shown (see, [25])

$$V_\sigma = \{x \in l_\infty : \lim_m t_{mn}(x) = L, \text{ uniformly in } n, \text{ } L = \sigma - \lim x\} \dots \quad (1.1)$$

where

$$t_{mn}(x) = \frac{1}{m+1} \sum_{k=0}^m x(\sigma^k(n)).$$

and $t_{-1}, n(x) = 0$.

The special case of (1.1) in which $\sigma(n) = n + 1$ was given by Lorentz [7].

By a lacunary $\theta = (k_r)$; $r = 0, 1, 2, \dots$ where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r . Freedman et al [4] defined the space of lacunary strongly convergent sequences N_θ as follows:

$$N_\theta = \left\{ x = (x_k) : \lim_r \frac{1}{h_r} \sum_{k \in I_r} |x_k - le| = 0, \text{ for some } l \right\}.$$

There is a strong connection between N_θ and the space w of strongly Cesàro summable sequences which is defined by Maddox [8] as follows;

$$w = \left\{ x = (x_k) : \lim_n \frac{1}{n} \sum_{k=0}^n |x_k - le| = 0, \text{ for some } l \right\}.$$

In the special case where $\theta = (2^r)$, we have $N_\theta = \sigma$.

Quite recently, concept of lacunary σ -convergent was introduced and studied by Savas [22] which is a generalization of the idea of lacunary almost convergence due to Das and Mishra [3]. If $x \in V_\sigma^\theta$ denotes the set of all lacunary σ -convergent sequences, then Savas [22] defined

$$V_\sigma^\theta = \left\{ x = (x_k) : \lim_r \frac{1}{h_r} \sum_{k \in I_r} (x(\sigma^k(n))) - L = 0, \text{ for some } L, \text{ uniformly in } n \right\}.$$

Note that for $\sigma(n) = n + 1$, the space V_σ^θ is the same as AC_θ . We write $V_\sigma^\theta = V_{\sigma_0}^\theta$ whenever $L = 0$. Then,

$$V_\sigma^\infty(\theta) := \{x \in l_\infty : \sup_{r,n} |t_{rn}(x)| \leq \infty\},$$

where

$$t_{nr}(x) = \frac{1}{h_r} \sum_{k \in I_r} x(\sigma^k(n)).$$

If $\theta = 2^r$ and $\sigma(n) = n + 1$, then $V_\sigma^\infty(\theta)$ is reduced to the set f_∞ defined by Nanda [11].

Just as boundedness is related to convergence, it is quite natural to expect that the sequence space $V_\sigma^\infty(\theta)$ is related to σ -convergence. But we observe that this concept coincide with l_∞ . To prove this let $x \in V_\sigma^\infty(\theta)$. Then there is a constant $M > 0$ such that

$$\frac{1}{h_1} |x(\sigma^1(n))| \leq \sup_{r,n} \frac{1}{h_r} \sum_{k \in I_r} |x(\sigma^k(n))| \leq M$$

for all n and so $x \in l_\infty$. Conversely, let $x \in l_\infty$. Then there is a constant $M > 0$ such that $|x_j| \leq M$ for all j and so

$$\frac{1}{h_r} \sum_{k \in I_r} |x(\sigma^k(n))| \leq M \frac{1}{h_r} \sum_{k \in I_r} 1 \leq M$$

for all r and n and so $x \in V_\sigma^\infty(\theta)$. Therefore $V_\sigma^\infty(\theta) = l_\infty$.

The space $V_\sigma(\theta)$ is BK spaces with the norm $\|x\| = \sup_{r,n} |t_{rn}(x)|$. In this paper we characterize matrix classes by using lacunary sequence space such as $(l_p, V_\sigma^\infty(\theta))$ and $(l_p, V_\sigma(\theta))$.

2. MAIN RESULTS

Let X and Y be two sequence spaces, $B = (b_{nk})_{n,k=1}^\infty$ be an infinite matrix of real or complex numbers and $B_n = (b_{nk})_{k=1}^\infty$ be the sequence in the n -th row of B . We write $Bx = B_n(x)$, where $B_n(x) = \sum_k b_{nk}x_k$ provided that the series on the right converges for each n . If $x = (x_k) \in X$, implies that $Bx \in Y$, then we say that A defines a matrix transformation from X into Y and by (X, Y) we denote the class of such matrices, that is, $B \in (X, Y)$ if and

only if $B_n \in X^\beta$ for all n and $Bx \in Y$ for all $x \in X$.

Let Bx be defined. Then, for all r, n , we write

$$t_{nr}(Bx) = \sum_{k=1}^{\infty} t(n, k, r) x_k ,$$

where

$$t(n, k, r) = \frac{1}{h_r} \sum_{i \in I_r} b(\sigma^i(n), k),$$

and $b(n, k)$ denotes the element b_{nk} of the matrix B .

Let $X(p)$ denote the set of all sequences $x = (x_k)$ such that the following norms are finite:

$$\|x\|_{X(p)} = \left\{ \sum_{s=0}^{\infty} |x_s'|^p \right\}^{1/p} , \text{ for } 1 \leq p < \infty$$

and

$$\|x\|_{X(\infty)} = \sup \left\{ |x_s'| ; s \geq 0 \right\} ,$$

where

$$x_s' = 2^{-s} \sup \left\{ \left| \sum_{i=2^s}^k x_i \right| ; 2^s \leq k < 2^{s+1} \right\} .$$

To simplify our presentation we shall confine ourselves to $1 < p < \infty$.

Next let $Y(q)$ denote the set of all sequences $y = (y_k)$ such that the following norms are finite;

$$\|y\|_{Y(q)} = \left\{ \sum_{s=0}^{\infty} |y_s'|^q \right\}^{1/q} , \text{ for } 1 < q < \infty$$

where

$$y_s' = 2^s \left\{ \sum_{2^s=k<2^{s+1}-1} |y_k - y_{k+1}| + |y_{2^{s+1}-1}| \right\}$$

The cases where $q = 1$ and $q = \infty$ are similar. In what follows we shall always assume $\frac{1}{p} + \frac{1}{q} = 1$

We now obtain the following theorem

Theorem 2.1. $A \in (X(p), V_\sigma(\theta))$ if and only if

- (i) $M = \sup\{\|b(n, k, r)_{k \geq 1}\|_{Y(q)}; m \geq 1\} < \infty$, and
- (ii) $\lim_r b(n, k, r) = \alpha_k$ uniformly in n , (k fixed)

Proof. The necessity is open. To prove the sufficiency given $x \in X(p)$ we want to show that Ax belongs to $V_\sigma(\theta)$. First we observe that $\alpha = (\alpha_k) \in Y(q)$ and $\|\alpha\|_{Y(q)} \leq M$ where M is the constant. Since $x \in X(p)$ for any given $\varepsilon > 0$, we can choose r_0 such that

$$\left\{ \sum_{s=s_0+1}^{\infty} |x_s'|^p \right\}^{1/p} < \frac{\varepsilon}{4M}.$$

Then we can find that for sufficiently large n

$$\begin{aligned} & \left| \sum_{k=1}^{\infty} (b(n, k, r) - \alpha_k) x_k \right| \\ & \leq \left| \sum_{s=0}^{\infty} \left| \sum_s (b(n, k, r) - \alpha_k) x_k \right| \right| \\ & \leq \sum_{s=0}^{s_0} \left| \sum_s (b(n, k, r) - \alpha_k) x_k \right| + \sum_{s=s_0+1}^{\infty} \left| \sum_s (b(n, k, r) - \alpha_k) x_k \right| \\ & \leq \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{4M} \\ & = \varepsilon \end{aligned}$$

□

Hence the proof is completed.

Let us denote v the space of sequences of bounded variation, that is

$$v = \{x : \sum_k |x_k - x_{k-1}| < \infty, x_0 = 0\}$$

v is a Banach space normed by $\|x\| = \sum_k |x_k - x_{k-1}|$.

We have

Theorem 2.2. $A \in (v, V_\sigma(\theta))$ if and only if

(i)

$$M = \sup_r \left| \sum_{k=t}^{\infty} b(n, k, r) \right| < \infty, t, n = 1, 2, \dots$$

(ii) there exists an $\alpha \in C$ such that

$$\lim_n \sum_k b(n, k, r) = \alpha,$$

uniformly in n ,

and

(iii) there exists an $\alpha_k \in C (k = 0, 1, 2, \dots)$ such that

$$\lim_r b(n, k, r) = \alpha_k,$$

uniformly in n .

Proof. Suppose that $B \in (v, V_\sigma(\theta))$. This implies that $Bx \in V_\sigma(\theta)$ for $x \in v$.

Since $V_\sigma(\theta) \subset \ell_\infty$,

$Bx \in \ell_\infty$ and hence (i) holds. Define $e_k = (0, 0, \dots, 0, 1(\text{kth place}), 0, \dots)$ and $e = (1, 1, \dots)$. Since e_k and e are in v , (ii) and (iii) must hold.

Conversely, suppose that the conditions (i) - (iii) hold and $x \in v$. Since $v \subset c$, therefore $x_k \rightarrow \ell$. Now

$$\sum_k |b(n, k, r)x_k| \leq \sum_k |x_k - x_{k-1}| \left| \sum_{k=1}^t b(n, k, r) \right| + \ell \left| \sum_k b(n, k, r) \right|.$$

By (i) and (iii) we get for each r ,

$$\sup_t \left| \sum_{k=1}^t b(n, k, r) \right| < \infty.$$

Therefore $t_{nr}(Bx)$ exists for each n and $x \in v$. Also $\sum \alpha_k x_k$ exists for each $x \in v$. For given $\varepsilon > 0$, choose and fix $k_0 \in \mathbb{Z}^+$ such that

$$\sum_{k=k_0+1}^t |x_k - x_{k-1}| < \varepsilon/4M.$$

We have

$$|t_{nr}(Bx) - \sum_k \alpha_k x_k - \ell \sum_k (b(n, k, r) - \alpha_k)| \leq I_1 + I_2$$

where

$$I_1 = \sum_{k=1}^{k_0} \left| \sum_{k=1}^t (b(n, k, r) - \alpha_k) \right| |x_k - x_{k-1}|,$$

and

$$I_2 \leq \sup_t \left| \sum_{k=1}^t (b(n, k, r) - \alpha_k) \right| \sum_{k=k_0+1}^t |x_k - x_{k-1}|.$$

By virtue of condition (iii) there exists an integer $n_o > 0$ such that $I_1 \leq \varepsilon/2$ for $n \geq n_o$. Clearly $I_2 \leq \varepsilon/2$. Further by virtue of condition (ii) we have for $n \geq n_o$,

$$\left| t_{nr}(Bx) - \sum_k \alpha_k x_k - \ell(\alpha - \sum_k \alpha_k) \right| \leq \varepsilon,$$

therefore we have uniformly in n ,

$$\lim_r t_{nr}(Bx) = \ell\alpha + \sum_k \alpha_k (x_k - \ell),$$

so that $Bx \in V_\sigma(\theta)$ and this completes proof. \square

We write $(v, V_\sigma(\theta), P)$ to denote the subset of $(v, V_\sigma(\theta))$ such that A is almost lacunary convergent to the limit of x in v .

We know consider the class $(v, V_\sigma(\theta), P)$.

Theorem 2.3. $A \in (v, V_\sigma(\theta), P)$ if and only if

(iv) the condition (i) of Theorem 2.2 holds

(v) $\lim_r \sum_k b(n, k, r) = 1$, uniformly in n ,

and

(vi) $\lim_r b(n, k, r) = 0$, for each k uniformly in n .

Proof. Let $B \in (v, V_\sigma(\theta), P)$. Then conditions hold by theorem 2.2. Let the conditions (i)-(iii) hold. Then by Theorem 2.2., $B \in (v, V_\sigma(\theta))$ and

$$\lim_r \sum_k b(n, k, r) x_k = \ell,$$

uniformly in n .

This completes the proof. \square

The following sequence space has been defined in [15].

Let X_p ($1 \leq p < \infty$) be the space of all $x \in X$ with

$$\|x\|_p = \left(\sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^n x_k \right|^p \right)^{1/p}$$

for $1 \leq p < \infty$.

It is easy to see that X_p ($1 \leq p < \infty$) is a Banach space of nonabsolute type and the above norm is saturated except for $p = 1$, (see, [15]).

Let Y_q be the space of all $y \in Y$ such that

- (a) $|ky_k| \leq M$ for all $k = 1, 2, \dots$
- (b) $\alpha_q(y) = \left(\sum_{k=1}^{\infty} |k(y_k - y_{k+1})|^q \right)^{1/q} < \infty$ for $1 \leq q < \infty$

and $\alpha_{\infty}(y) = \sup \{|k(y_k - y_{k+1})| ; k = 1, 2, \dots\} < \infty$.

The following theorem is due to Ng [14].

Theorem 2.4. *The associate space X_p' of X_p is the space Y_q with the norm α_q , where $\frac{1}{p} + \frac{1}{q} = 1$.*

We need the following lemma is due to [15] for the proof of the next theorem.

Lemma 2.1. *A matrix A transforms a BK - space E into a BK - space F then the transformation is linear and continuous.*

We now have

Theorem 2.5. *An infinite matrix $B \in (X_p, V_{\sigma}(\theta))$ if and only if B satisfies the following conditions :*

$$(i) \quad \sup_{nr} \left\| \{k(b(n, k, r) - b(n, k + 1, r))\}_{k \geq 1} \right\|_q < \infty ,$$

$$(ii) \quad \sup_k |kb(n, k, r)| < \infty \text{ for every fixed } n, r,$$

$$(iii) \quad \lim_r k(b(n, k, r) - b(n, k + 1, r)) = \delta_k, \text{uniformly in } n, \text{ for every fixed } k,$$

$$\text{where } \frac{1}{p} + \frac{1}{q} = 1.$$

Proof. First we prove that the conditions are necessary . Suppose $B = (b_{nk})$ maps X_p into $V_{\sigma}(\theta)$, then the series

$$t_{nr}(Bx) = \sum_{k=1}^{\infty} b(n, k, r) x_k$$

is convergent for every n, r and for every $x \in X_p$. Then Theorem 2.4 the sequence $(b(n, k, r))_k$ is an element in Y_q for every n, r . It follows that the condition (ii) holds and

$$\|\{k(b(n, k, r) - b(n, k + 1, r))\}_{k \geq 1}\| < \infty.$$

Since X_p and $V_\sigma(\theta)$ are BK-spaces therefore by Lemma 2.1, we have

$$\|t_{nr}(Bx)\| \leq K \|x\|_p$$

for some real constant K , and all $x \in X_p$ or

$$\sup_{nr} |t_{n,r}(Bx)| \leq K \|s\|$$

for all $x \in X_p$ with $s = (s_k)$ where

$$s_k = \frac{1}{k} \sum_{i=1}^k x_i.$$

It follows that

$$\sup_{nr} \left| \frac{\sum_{k=1}^{\infty} k(b(n, k, r) - b(n, k + 1, r))s_k}{\|s\|} \right| \leq K.$$

Hence we have

$$\sup_{n,r} \|\{k(b(n, k, r) - b(n, k + 1, r))\}_{k \geq 1}\| \leq K.$$

Therefore the condition (i) holds. To prove the condition (iii) is necessary. We take for each fixed k , a sequence $x^{(k)}$ in X_p with $x_j^{(k)} = k$, if $j = k$, $-k$ if $j = k + 1$, $=0$, if $j \neq k, k + 1$. Then we see that

$$s_k = \frac{1}{k} \sum_{j=1}^k x_j^{(k)} = 1$$

and $s_j = 0$ if $j \neq k$. For this $x^{(k)}$ we have,

$$\begin{aligned}
t_{rn}(Bx^{(k)}) &= \sum_{j=1}^{\infty} b(n, j, r) x_j^{(k)} = \sum_{j=1}^{\infty} j(b(n, j, r) - b(n, j+1, r)) s_j \\
&= k(b(n, k, r) - b(n, k+1, r)) \rightarrow \delta_k
\end{aligned}$$

as $r \rightarrow \infty$, uniformly in r . This shows that condition (ii) is necessary.

Conversely, suppose the conditions (i), (ii) and (iii) hold. Then by conditions (i) and (ii) the series

$$t_{rn}(Bx) = \sum_{k=1}^{\infty} b(n, k, r) x_k$$

is convergent for every n, r and $x \in X_p$. By the condition (iii) we have

$$|k(b(n, k, r) - b(n, k+1, r))|^q \rightarrow \|\delta_k\|^q$$

as $r \rightarrow \infty$ uniformly in n and since for every positive integer p

$$\left\{ \sum_{k=1}^p |k(b(n, k, r) - b(n, k+1, r))|^q \right\}^{1/q} \leq \sup_{nr} \left\{ \sum_{k=1}^{\infty} |k(b(n, k, r) - b(n, k+1, r))|^q \right\}^{1/q} = \beta$$

by letting $r \rightarrow \infty$ we get

$$\left\{ \sum_{k=1}^p |\delta_k|^q \right\}^{1/q} \leq \sup_{r,n} \left\{ \sum_{k=1}^p |k(b(n, k, r) - b(n, k+1, r))|^q \right\}^{1/q}.$$

Since this true for every positive integer p , it follows that

$$\left\{ \sum_{k=1}^p |\delta_k|^q \right\}^{1/q} < \infty.$$

Now for every sequence $x \in X_p$, we have

$$s_n = \frac{1}{n} \sum_{k=1}^n x_k$$

as $n \rightarrow \infty$. Given any $\varepsilon > 0$, there exists $N > 0$ such that

$$\left\{ \sum_{k=N}^{\infty} |s_k|^p \right\}^{1/p} < \frac{\varepsilon}{4\beta}.$$

And by condition (iii) there exists integer N_1 such that

$$\left| \sum_{k=1}^N \{k(b(n, k, r) - b(n, k+1, r) - \delta_k)\} s_k \right| < \frac{\varepsilon}{2},$$

for all $r > N_1$. Now for all $r > N_1$,

$$\begin{aligned} \left| \sum_{k=1}^{\infty} \{k(b(n, k, r) - b(n, k+1, r) - \delta_k)\} s_k \right| &\leq \left| \sum_{k=1}^N \{k(b(n, k, r) - b(n, k+1, r) - \delta_k)\} s_k \right| \\ &\quad + \left| \sum_{k=N+1}^{\infty} \{k((b(n, k, r) - b(n, k+1, r) - \delta_k)\} s_k \right| \\ &< \frac{\varepsilon}{2} + \left(\sum_{k=N+1}^{\infty} \{|k(b(n, k, r) - b(n, k+1, r))| + |\delta_k|\}^q \right)^{1/q} \times \left(\sum_{k=N+1}^{\infty} |s_k|^p \right)^{1/p} \\ &< \frac{\varepsilon}{2} + 2\beta \frac{\varepsilon}{4\beta} = \varepsilon. \end{aligned}$$

So we have

$$\lim_r \sum_{k=1}^{\infty} k(b(n, k, r) - b(n, k+1, r) - \delta_k) s_k = \sum_{k=1}^{\infty} \delta_k s_k$$

uniformly in n . It follows that

$$\begin{aligned} \lim_r t_{nr}(Bx) &= \lim_r \sum_{k=1}^{\infty} b(n, k, r) x_k \\ &= \lim_r \sum_{k=1}^{\infty} k(b(n, k, r) - b(n, k+1, r)) s_k \\ &= \sum_{k=1}^{\infty} \delta_k s_k \end{aligned}$$

uniformly in n . This show that $Bx \in V_{\sigma}(\theta)$ and $B = (b_{nk})$ maps X_p , ($1 \leq p < \infty$) into $V_{\sigma}(\theta)$. This completes the proof. \square

Corollary 2.1. *A matrix transformation $B = (b_{nk})$ maps the space X_p into the space $V_\sigma(\theta)_0$ if and only if*

(i) the conditions (i) and (ii) of Theorem 2.5 hold, b (ii) $\lim_r k(b(n, k, r) - b(n, k + 1, r)) = 0$, uniformly in n , for every fixed k , where $\frac{1}{p} + \frac{1}{q} = 1$.

Acknowledgement: The author is sincerely grateful to the referee and to Prof. S. Nanda for their valuable suggestions which improved the presentation of the paper.

REFERENCES

- [1] S. Banach, Théorie des Opérations linéaires, Chelsea Publ. Co., New York, 1955.
- [2] M. Başarır and E. Savas, On matrix transformations of some generalized sequence space. Math. Slovaca 45 (1995), no. 2, 155-162.
- [3] G. Das and S. K. Mishra, *Banach limits and lacunary strong almost convergence*, J. Orissa Math. Soc. 2(2), (1983), 61-70.
- [4] A. R. Freedman, J. J. Sember, M. Raphaël, Some Cesaro type summability spaces, Proc. London. Math. Soc., 37 (1978), 508-520.
- [5] V. Karakaya, θ_σ -summable sequences and some matrix transformations, Tamkang J. Math. 35(4)(2004), 313-320.
- [6] V. Karakaya and N. Şimşek, On some matrix transformations. Int. Math. J. 4 (2003), no. 1, 1925.
- [7] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80(1948), 167-190.
- [8] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), 345 - 355.
- [9] M. Mursaleen, A new sequence space of invariant mean and some matrix transformations, J. Orissa Math. Soc., 27(2008), 13-20.
- [10] M. Mursaleen, Sequence spaces of invariant means and some matrix transformations Conference Paper in Hacettepe University Bulletin of Natural Sciences and Engineering Series B: Mathematics and Statistics, July 2010.
- [11] S. Nanda, Matrix transformations and almost boundedness, Glasnik Matematicki, 14(34)(1979), 99-107.
- [12] S. Nanda, Some sequence spaces, Math. Student, 21(1980), 351-356.
- [13] S. Nanda and T. Bilgin, σ -continuity and absolute almost convergence, Pan. American Math. Journal, 29(2) (2019), 75-83.
- [14] Ng Peng Nung, Matrix transformations on a pair of Mutually associate spaces of a nonabsolutely type, Tamkang Jour. Math. 18(3) (1987), 69-73.
- [15] NgPeng-Nung and Peng Yee Lee, Cesaro sequence spaces of nonabsolute type, Comm. Math. Prace. Math. 20(2) (1977/78), 193-197.
- [16] E. Savaş, Matrix transformations of some generalized sequence spaces. J. Orissa Math. Soc. 4 (1) (1985), 37-51.

- [17] E. Savaş, Matrix transformations and absolute almost convergence. *Bull. Inst. Math. Acad. Sinica* 15(3) (1987), 345-355.
- [18] E. Savaş, Matrix transformations between some new sequence spaces. *Tamkang J. Math.* 19(4) (1988), 75-80.
- [19] E. Savaş, σ -summable sequences and matrix transformations. *Chinese J. Math.* 18(3) (1990), 201-207.
- [20] E. Savaş, Matrix transformations and almost convergence. *Math. Student* 59(1-4), (1991) , 170-176.
- [21] E. Savaş, Matrix transformations of X_p into C_s . *Punjab Univ. J. Math. (Lahore)* 24 (1991), 59-66.,
- [22] E. Savaş, On lacunary strong σ -convergence, *Indian J. Pure appl. Math.* 21(4), (1990), 359-365.
- [23] E. Savaş and Mursaleen, Matrix transformations in some sequence spaces, *Istanbul Univ. Fen Fak. Mat. Derg.* 52, (1993) 1-5.
- [24] E. Savaş, On infinite matrices and almost λ - sequence spaces, *Modern methods in Analysis and applications*, 2010 Anamaya Publishers, New delhi, India, (2010),27-35.
- [25] P. Schaefer, Infinite matrices and invariant means, *Proc. Amer. Math. Soc.*, 36(1972), 104-110.
- [26] K. Yosida, *Functional Analysis* (Springer-Verlag, Berlin Heidelberg New York, 1995.