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Abstract

The main goal of this paper is to develop the theory of finding n real fixed
points of a real polynomial function of degree n using the theory of variational
inequalities. The fixed points equations are also reduced to Legendre poly-
nomial equations. Numerical algorithm for finding the fixed points using the
theory of variational inequalities is discussed with relaxed step. To support
the theorems of the paper, a pair of examples is illustrated. The theory of fixed
points for higher degree polynomials is discussed using Frobenius companion

matrix.
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1. INTRODUCTION

Variational inequality problem (VIP) was developed by G. Stampacchia
([7],1964) to study the Signorini contact problem as a general purpose. Later
the theory of VIPs became very interesting because it is simple, direct, uni-
fied and one of the most efficient frameworks to solve the equilibrium and
non-equilibrium problems. In the recent times the theory of variational in-
equalities have turned out to be very useful application in studying the prob-
lems arising in Applied Mathematics, Applied Physics, Engineering, Medical,
Finance etc. Some important problems are constrained/unconstrained opti-
mization problems, image processing problems, contact problems, networking
problems, obstacle problems, viscocity problems, nash equilibrium problems
and many more.

The theory of fixed point problems (FPP) is used to solve the equilibrium
problems and non-equilibrium problems. The researchers have also observed
that FPP is a particular case of VIP. Various type of iterative methods are de-
veloped to solve the variational equalities using fixed point theorems. Chen [1]
has proposed an improved two-step extragradient algorithm for pseudomono-
tone generalized variational inequalities. He has used two projections at each
iteration and which allows one to take different stepsize rules.

Nomirovskii et al. [6] have developed a new two-stage method for the
approximate solution of variational inequalities with pseudo-monotone and
Lipschitz-continuous operators acting in a finite-dimensional linear normed
space using the Bregman divergences.

Recently Das [2] has developed the variable step iterative method to find the
existence theorem of T-n-invex function by considering it as a F-variational in-
equality problem. Later Das et. al [2, 5, 3] have studied some other variational

inequalities using the variable step iterative method.
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In this paper we develop the theory to generate a real algebraic polynomial
function of degree n having exact n real fixed point, called n-exact real fixed
point function. We obtain the exactly n real fixed points of the n-exact real

fixed point function using the theory of variational inequalities.

2. REAL ALGEBRAIC EQUATION

In general, the real fixed point problem is of finding a real point € R of
the function f € X* satisfying f(x) = x. Let p,(x) be an algebraic polynomial
of degree n, n > 0 and yy(z) = 2 be an algebraic monomial with degree k for

each k =0,1,--- ,n. For x € R and n € W, the set of whole numbers, let
Yo (z) = {y ER:y=y(z)= Zakyk(x) = pn(®), yp(z) = 2", ax €R,w € R} -
k=0
We denote

(Yo (z)] = {[y(@’)] = (yo(2), 91(2), -, yn(2)) € R™ :,yp(w) = 2*,0 <k < n}
The dual of [Y,(x)] is defined by

Yy, (2)]* = {a = (g, a1, - ,a,) €R" : afy(x)] = Zakyk(x) =y(x) eR,z € R}
k=0

and its bidual is defined by
(Yo ()] = {[y] = (yo,»yn) ER" - [y(2)] = ) aryu() = y(z) € R,z € R} :
k=0

For our need we consider (g, f) evaluates the value of g € [Y,(x)]* at f €
[Ya()]

For K C R, let [y] : K — R""! be defined by [y](z) = [yr(z)] where
yr, : K — R satisfies yg(7) = 2F for all k € N. Assume that A : K — [Y,,(z)]*
is defined by

A(z) = (ag, a1, ,an) € [Yo(2)]" =R
for each x € K. As A(x) : [Yo(x)] = R, we have A(z)(f) € R for each
f e Wa(@)] = R A@)y] = (A@), [y(e))) for [5] € [Yn(z)]. Now the
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canonical embedding J : [Y,(z)] — [Y,(2)]** (continuous or discontinuous

map) defined by

n

J(y(@)(a) = (a.[y(2)])) = [a)-[y(2)] = Y aryr(e) = Y ara® = y(a) = (A(@), [y(2)])
k=0

k=0
is a homeomorphism for a; € R,z € R.

2.1. Exact real FPP. In order to study the existence of exact real fixed
point problem (ERFPP), we need to define the concept of exact real fixed

point function.

Definition 2.1. A polynomial function f(z), z € K € R is said to a n-ezact
real fixed point function, if it satisfies an algebraic equation of degree n with

real coefficients and has exactly n real solutions which are the fixed points of

f.

Let f(z) € Y,(x) be arbitray. Let F),(xz) be the collection all real valued

functions f : X — R having exactly n real fixed points, i.e.,
F,(z) ={f: X — R|f(x) = = has exactly n real solutions} .
Consider
[Fr(z)] ={f: X = R|f(x) € Fr(x)NYy,(x),z € K}.

The problem of exact real FPP (ERFPP-n) is to find a function f(z) € R
for which the equation f(z) =z, x € K C R satisfies a n degree real algebraic
equation p,(z) =0, i.e., to find f € [F,(x)] such that

(A(@), [f(@)]) = =1+ Y _apa® =0 (1)
k=1
for all [f(z)] € [Y(2)], z € R.

Theorem 2.2. For k # 0, fivr a = —k? and b* > 4k%. Assume that A(x) =
(=1,b,a) € [Ya(z)]* = R3; then (1) gives two real fived point equation of
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degree 2 (2-RFPE) with ezxactly 2 real fized points and exact real FPP functions

satisfying the equations
k22 (2k+m)z—1=0 (2a)
r? 4+ (2k+m)z +1=0 (2b)
for some m > 0 € R. (From the above two equations one can get the exact

real fized point function f(z) with exactly two fized points.)

Proof. For any A(x) = (—1,b,a) € [Yo(2)]* = R and [f(x)] = (1,z,2%) € R,
(1) gives the equation

ar’+br—1=0 (3)

which has the real roots if b> > 4a. Choose a = —k?, to get b% > 4k?, i.e.,
b > 2k or b < —2k, implying b = 2k + m or b = —2k — m for some m > 0.

(a) Putting @ = —k? and b = 2k + m in equation (3), we obtain

—k*? 4+ (2k + m)x — 1 =0.
(b) Putting a = —k? and b = —(2k + m) in equation (3), we obtain

k*z? + (2k +m)z + 1 = 0.
This completes the proof. O
Theorem 2.3. For A(z) = (—1,¢,b,a) € [Y3(z)]* = R* and [f(z)] =
(1,z,2%,23), the equation (1) has a real point solution v = o = k? > 0

for some k # 0; this is a fized point of the real fized point function f(x). If

the function given in the equation (1) has the representation

(A(x), [f(2)]) = (& — a)(pa® + qz +7)

where p= 32 >0,r=72>c R with*> =1/a, =28y +m orq= —2By—m
for some B >0, v >0 and m > 0, then real algebraic fized point equations of
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degree 3 are
B2 + (28K~ — K+ m)2® + (k72 = 2k7Bk™ —k*m)z—1=0  (4a)
B2+ (—28k " — k2 +m)a® + (k7% + 2628k~ — K*m)x —1=0  (4b)

(From the above two equations one can get the exact real fized point function

f(x) with exactly three fixed points.)

Proof. Since o = k? is a real fixed point of the function f(x) which is a solution

of the equation
(A(2), [f(2)]) = (x = a)(pa® + gz +7) =0, (5)
implying
pr +qgr+r=20
which gives two real roots if the discriminant D = ¢® — 4pr > 0, i.e., ¢ > 23y

and ¢ < —2By for p = 82 > 0, r = 42 € R. Thus ¢ = 28y + m and
q = —2p~v — m for some m > 0.

(a) Putting p = 82 > 0, r = 42 € R and ¢ = 28y + m in equation (1), we

obtain
(z — a)(B%2* + 2By +m))z + 7> =0 (6)

(b) Putting p = 82 > 0, r = 42 € R and ¢ = 237 + m in equation (1), we
obtain
(x — @) (B%a? — (287 +m))z +7* = 0. (7)
The equations 6 and 7 are the 3-exact real algebraic fixed point equation of
degree 3. Thus
(a) for a = k% and 72 = 1/k% k > 0, ¢ = 287 + m, (6) gives the exact real

algebraic fixed point equation with degree 3 as

B’ + 28K — K bm)a® + (K72 = 266 — Km)z —1=0,  (8)
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(b) for a = k? and y2 = 1/k?, k > 0, ¢ = —(287+m), (7) gives the exact real

algebraic fixed point equation with degree 3 as
B2 + (=2t —k* +m)z® + (k2 +2kB —kK*m)z—1=0  (9)

which completes the proof of the theorem. O

2.2. Examples. Theorem 2.2 and Theorem 2.3 are illustrated by the following

examples:

Example 2.4.

(1) For m = 1, k = 1, equation (2a) gives the real fixed point equation of

degree 2 as
—22 43z —-1=0

which has exactly two real fixed points as (3 & v/5)/2. From the above
equation, the exact fixed point function f(x) can be obtained.

(7i) For m = 1, k = 2, equation (2a) gives the real fixed point equation of
degree 2 as

42’ +5x—-1=0

which has exactly two real fixed points as z1 = 0.25 and zo2 = 1. From

the above equation, the exact fixed point function f(x) can be obtained.

Example 2.5. For m =1 choosea==1;weget y=1,¢g=3,p=1 and
r = 1. Putting the value in the equation (4a), we get

(—1)(2?+324+1)=0=23+222 - 22 —1=0

which is the exact real algebraic fixed point equation with degree 3 and
has exactly three real solutions as z; = 1,22 = —2.618033989 and z3 =
—0.3819660113 which are the fixed point of some function f(x).
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3. STUDY USING LEGENDRE POLYNOMIALS

Let £ be the set of all Legendre polynomials and Py (z) € £ be the Legendre
polynomial of degree k, by, € R for each k and

Pu(e) = {y ER:y=u(z)= Zbkpk@)}-
k=0

Each y € Y, (x) can be expressed as

y=pa(x) =Y axa® = bPi(z) € Py(x)
k=0 k=0

for some b, € R, k£ =0,1,--- ,n, implying the basis for both the polynomial
spaces Y, (z) and P,,(z) are same spaces. and
[P (2)] = {[w(z)] = (Po(z), Pi(2), -, Po(z)) € R" 1, P(z) € £,0< k < n},
then [Y,(z)] and [P,] are equivalence spaces. The dual of [P,(x)] is defined
by
[Pr(2)]" = {5 = (B0, B, Bn) €R™: Blw(@)] = Y BrPilx) = y(fﬂ)}
k=0

and its bidual is defined by
[Py ()] = {[W] = (Po(x),++, Pa(x)) €R™: B [w(x)] = > BrPr(x) = y(x)}
k=0

for all x € R. We consider the pairing (h,w), that evaluates the value of
h € [P,(z)]* at f € [P,(x)]. Assume that the mapping B : R — [P, (x)]* is
defined by

B(.%') - (50>ﬁ17 Tt 7/8n> S [Pn($)]* - Rn+l
for each x € K. Now the canonical embedding J; : [P,(x)] — [Pp(z)]™

(continuous or discontinuous map) defined by

Ji([w(@)]))(8) = Y BrPu(z) = y() = (B(x), [w())),
k=0
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is a homeomorphism for g, € R,x € R. Hence we obtain the relation

(A@). y@)]) = Y aw@)
k=0

S GPia) = (Bla) [w@)),
k=0
Hence the Legendre polynomial equation for n-exact fixed point is
(B(x), [w(@)]), =Y BrPi(x) =0 (10)
k=0
for each z € R.

Theorem 3.1. For k # 0 and m > 0, assume that

2 2
Ba) = (.20 F m =2 ) € [Pa(o)] = B [B(@)] = (Ra(a). (o). Paa).

then (10) gives two real fized point equation of degree 2 (2-RFPE) with ezactly

2 real fized points and exact real FPP functions satisfying the equations

—23]{:2]32(.%) + (2k +m)Pi(x) — (1 + ké;) Py(z) =0 (11a)

for some m >0 € R. From the above two equations one can get the exact real

fized point function f(x) with exactly two fixed points.

Proof. By using Theorem 2.2, we have A(z) = (—1,b,a) € [Yo(x)]* = R?, the
basis element is [f(x)] = (1,z,2%) € R? associates to the 2-exact fixed point

equations as
—k22?+ (2k+m)z—1=0
k*2? + (2k +m)z 4+ 1 = 0.
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According to Theorem 2.2, we have
(a) for a = —k? and b = 2k + m, equation (3) gives
—k?2% 4+ (2k+m)z —1 =0,
implying
2k? < k2

—?Pg(a:) + 2k +m)Pi(x) — |1+ 3> Py(z) =0,

(B(x), [w(z)]), =0
where B(z) = (= (145 ), 2k +m, ~2) and [w(z)] = (Py(x), Pi(2), Po());
(b) for a = —k? and b = —(2k + m), equation (3) gives
E22? + (2k +m)z 4+ 1 =0,

implying

2§2P2(:r:) + (2k +m)Pi(x) + <1 + k;) Py(z) =0

where B(z) = <1 + %, (2k +m), #) and [w(x)] = (Po(x), Pi(z), P (z)).

This completes the proof. Il

Theorem 3.2. For some k #0, m >0 and B € Z, assume that
y(x) = (Ax), [y(2)]) = —1 + a1z + aza® + aza’®
where A(z) = (—=1,a1,a2,a3), a1 = k=2 F 2k?Bk™! — k?m, ay = £28k™! —
k? +m and a3 = B?, B € Z, the positive integer set. Then
B($) = (ﬁ0761762>63) € [Pg(l’)]* = R4
and [w(x)] = (Po(zx), Pi(x), Py(x), P3(x)), the real algebraic fized point equa-
tions (10) of degree 3 are
y =w(z) = (B(x), [w(z)]) = BoFo(z) + fiP1(z) + BoPa(x) + BsPs(x) = 0

whereﬂ():—l—ﬁ—%?,ﬁl:al—k&%,ﬁz:2% and/@?’:%'
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Proof. Given for some k # 0, m > 0 and 8 € Z4, assume that
y(x) = (A(z), [y(2)]) = =1 + a1z + azz? + aza®
where A(z) = (=1, a1,a2,a3), a1 = k~2F2k*Bk~ —k?*m, as = £28k~ 1 —k>+m
and a3 = (2, i.e.,
(1) for a; = k=2 = 2k%Bk~! — k?m, as = 28k~ — k? + m and a3 = B2, the
3-exact real fixed point equation of degree 3 is

y(x) = =14 a1z + agz?® + azz®

which can be written as
Yy = ’w(l’) = /Bopo(ﬂf) + g1 Py (a;) + ﬁQPQ(CE) + ﬂng(:IJ) =0

where By = =1+ 2,81 = a1 + 28,8, = 22 and 5 = 28.
(2) For a1 = k=2 + 2k?Bk~! — k*m, ag = —2B8k~' — k? + m and a3 = 32,
the 3-exact real fixed point equation of degree 3 is
y(z) = —1 + 12 + azz® + azz®
which can be written as
y=w(z) = BoPo(z) + B1Pi(x) + B2 Pe(x) + B3P3(x) =0
where By = —1+ %, 3 :a1+3%,ﬁz = 2% and (33 = %%

which completes the proof of the theorem. O

4. FIXED POINT USING VIP

Let X =R and K C X be a nonempty convex compact subset of X. Let
f: K — R be an n-exact real fixed point function, i.e., f € [F,(x)]. By fixed

point theory, equation (1) can be written as

z = F(x)
where F(z) =z — p (A(z),[f(z)]) satisfying
O =1 = ptan, )| <1
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for all = € [a, b] with the condition (A(a), [f(a)]) (A(b),[f(b)]) <O.

The iterative method is

Tn+1 :F(xn),n:O,l,--~,

ie.,
(T4l — Tn, v — ) + pn (Ap(x),v —25) >0
An(z) = (A(zn), [f(2n)])
for n = 0,1,2,--- and for all v € K which is the numerical method for

variational inequality problem to find the fixed point of the real function f(x)

with real coefficients where the step length is

pp < —min <xn+1 — T,V — xn>
"= ovex  (Ap(x),v— )

An(x) = (Aln), [f(2n)])

for each stepn=0,1,2,---.

4.1. Numerical Method for the Examples 2.4 and 2.5.
(1) In Example 2.4(i), if we take f(x) = —2? + 3z — 1

then we get two real fixed points 21 and x9 in the interval [0, 3]. To
use variational inequality problem, we have F(z) = z— f(z) = 22 —2z+
1 satisfying the condition |F'(x)| = |22 —2| < 1, i.e., |z —1] < 1/2,
ie., 0.5 < z < 1.5 which is valid. The step wise algorithm for the
numerical variational equality method is
(a) Choose pg > 0, any zg € [0,1] = K; for x; and zo € [2,3] = K>

for xo,

(b) forn=0,1,2,---, compute

Tny1 = Flay)
pn = —min (xQn-&-l — Zn) (v — Tn)
veX (—x2 +3xy, — 1) (v —xy)
Tpn = Tn+pPn

forall v e K;,i =1,2.
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(2) In Example 2.5, if we take f(x) = 234222 —2z—1 then f(—3)f(-2) <
0, f(—1)f(0) < 0and f(0)f(2) <0, so there are three real fixed points
x1, xo and x3 in the interval [—3,2]. To use variational inequality
problem, we have F(z) = x — f(x) = —23 — 222 + 3z + 1 satisfying the
condition |F'(z)| = |-32? —4x + 3| < 1,ie, -1 < —3z? 4243 < 1.
Algorithm for the numerical variational equality method, the step wise
algorithm is
(a) Choose py > 0, any x¢ € [-3,—2] = K; for 21, zp € [-1,0] = K3

for x9 and z¢ € [0,2] = K3 for x2

(b) for n=0,1,2,---, compute

Tny1 = Flxy,)
_ . ($n+1 - xn)(v - xn)
Pn = —min
veX (x3 + 222 — 2z, — 1) (v — 2y)
Tp = Tn+ Pn

forallv e K;,i=1,2.

4.2. Companion Matrix and Exact real fixed point function of higher
degree n > 3. Since f(x) is a real algebraic polynomial of degree n, it can

be written as
f(@)=2a"+ap_12" '+ + a1z + ag = pu(z)

where a;’s are real numbers. The polynomial function p,(z) can be expressed

associated with the real Frobenius companion matrix [4] A defined by

0 1 0 0
0o 0 1 0
A= : 0
0 0 0 1
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Thus the characteristic polynomial det(A — zI) is £p,(x) ([4]), i.e.,

zr -1 0 0
0 r -1 0
pa(w)=| 1 i 0
0 0 0 -1
—ap —ai —as -+ T+ anp-1

Since x is the eigen value of A, then x satisfies the polynomial equation p,(z) =
0 (Mora [4]). Now the companion matrix A is diagonalizable, so the diagonal
elements of the eigen values of A which are the roots of p,(z). Hence these
eigen values are fixed points of the n-exact real fixed point function f(x). If y
is the eigen vector corresponding to eigen value x of A, then the eigen values

of the companion matrix can be obtained using power method, i.e.,
Yn+1 = Ayn = TnlYn, N = 071727"' ;

where x,, is the eigen value of the matrix A in (n + 1) step. The above
numerical method can be expressed as a numerical method of a variational
inequality problem to find y,, € V, a closed convex subset in R" and x,, € R

satisfying
(Un+1 = Yn, 0 = Yn) + pu (F(Yn), 2 — yn) > 0

and F(y,) = (I — Ay, for n =0,1,2,--- for all z € V. The iterative step is

n=0,1,2,---

Ynt1 = Ayn = Ty,

Yn = Yn*

F(yn) = (I - A)yn

pn = i

Tpatl = Tn + Pn, f(xn—l-l) = pn(xn)
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