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Abstract

The main goal of this paper is to develop the theory of finding n real fixed

points of a real polynomial function of degree n using the theory of variational

inequalities. The fixed points equations are also reduced to Legendre poly-

nomial equations. Numerical algorithm for finding the fixed points using the

theory of variational inequalities is discussed with relaxed step. To support

the theorems of the paper, a pair of examples is illustrated. The theory of fixed

points for higher degree polynomials is discussed using Frobenius companion

matrix.
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1. Introduction

Variational inequality problem (VIP) was developed by G. Stampacchia

([7],1964) to study the Signorini contact problem as a general purpose. Later

the theory of VIPs became very interesting because it is simple, direct, uni-

fied and one of the most efficient frameworks to solve the equilibrium and

non-equilibrium problems. In the recent times the theory of variational in-

equalities have turned out to be very useful application in studying the prob-

lems arising in Applied Mathematics, Applied Physics, Engineering, Medical,

Finance etc. Some important problems are constrained/unconstrained opti-

mization problems, image processing problems, contact problems, networking

problems, obstacle problems, viscocity problems, nash equilibrium problems

and many more.

The theory of fixed point problems (FPP) is used to solve the equilibrium

problems and non-equilibrium problems. The researchers have also observed

that FPP is a particular case of VIP. Various type of iterative methods are de-

veloped to solve the variational equalities using fixed point theorems. Chen [1]

has proposed an improved two-step extragradient algorithm for pseudomono-

tone generalized variational inequalities. He has used two projections at each

iteration and which allows one to take different stepsize rules.

Nomirovskii et al. [6] have developed a new two-stage method for the

approximate solution of variational inequalities with pseudo-monotone and

Lipschitz-continuous operators acting in a finite-dimensional linear normed

space using the Bregman divergences.

Recently Das [2] has developed the variable step iterative method to find the

existence theorem of T -η-invex function by considering it as a F -variational in-

equality problem. Later Das et. al [2, 5, 3] have studied some other variational

inequalities using the variable step iterative method.
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In this paper we develop the theory to generate a real algebraic polynomial

function of degree n having exact n real fixed point, called n-exact real fixed

point function. We obtain the exactly n real fixed points of the n-exact real

fixed point function using the theory of variational inequalities.

2. Real algebraic equation

In general, the real fixed point problem is of finding a real point x ∈ R of

the function f ∈ X∗ satisfying f(x) = x. Let pn(x) be an algebraic polynomial

of degree n, n ≥ 0 and yk(x) = xk be an algebraic monomial with degree k for

each k = 0, 1, · · · , n. For x ∈ R and n ∈W, the set of whole numbers, let

Yn(x) =

{
y ∈ R : y = y(x) =

n∑
k=0

akyk(x) = pn(x), yk(x) = xk, ak ∈ R, x ∈ R

}
.

We denote

[Yn(x)] =
{

[y(x)] = (y0(x), y1(x), · · · , yn(x)) ∈ Rn :, yk(x) = xk, 0 ≤ k ≤ n
}
.

The dual of [Yn(x)] is defined by

[Yn(x)]∗ =

{
α = (α0, α1, · · · , αn) ∈ Rn : α[y(x)] =

n∑
k=0

αkyk(x) = y(x) ∈ R, x ∈ R

}
and its bidual is defined by

[Yn(x)]∗∗ =

{
[y] = (y0, · · · , yn) ∈ Rn : α · [y(x)] =

n∑
k=0

αkyk(x) = y(x) ∈ R, x ∈ R

}
.

For our need we consider 〈g, f〉 evaluates the value of g ∈ [Yn(x)]∗ at f ∈
[Yn(x)].

For K ⊂ R, let [y] : K → Rn+1 be defined by [y](x) = [yk(x)] where

yk : K → R satisfies yk(x) = xk for all k ∈ N. Assume that A : K → [Yn(x)]∗

is defined by

A(x) = (α0, α1, · · · , αn) ∈ [Yn(x)]∗ = Rn+1

for each x ∈ K. As A(x) : [Yn(x)] → R, we have A(x)(f) ∈ R for each

f ∈ [Yn(x)] = Rn+1. A(x)[y] = 〈A(x), [y(x)]〉 for [y] ∈ [Yn(x)]. Now the
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canonical embedding J : [Yn(x)] → [Yn(x)]∗∗ (continuous or discontinuous

map) defined by

J([y(x)])(α) = 〈α, [y(x)]〉 = [α]·[y(x)] =
n∑

k=0

αkyk(x) =
n∑

k=0

αkx
k = y(x) = 〈A(x), [y(x)]〉

is a homeomorphism for αk ∈ R, x ∈ R.

2.1. Exact real FPP. In order to study the existence of exact real fixed

point problem (ERFPP ), we need to define the concept of exact real fixed

point function.

Definition 2.1. A polynomial function f(x), x ∈ K ∈ R is said to a n-exact

real fixed point function, if it satisfies an algebraic equation of degree n with

real coefficients and has exactly n real solutions which are the fixed points of

f .

Let f(x) ∈ Yn(x) be arbitray. Let Fn(x) be the collection all real valued

functions f : X → R having exactly n real fixed points, i.e.,

Fn(x) = {f : X → R|f(x) = x has exactly n real solutions} .

Consider

[Fn(x)] = {f : X → R|f(x) ∈ Fn(x) ∩ Yn(x), x ∈ K} .

The problem of exact real FPP (ERFPP -n) is to find a function f(x) ∈ R
for which the equation f(x) = x, x ∈ K ⊂ R satisfies a n degree real algebraic

equation pn(x) = 0, i.e., to find f ∈ [Fn(x)] such that

〈A(x), [f(x)]〉 = −1 +
n∑

k=1

αkx
k = 0 (1)

for all [f(x)] ∈ [Yn(x)], x ∈ R.

Theorem 2.2. For k 6= 0, fix a = −k2 and b2 > 4k2. Assume that A(x) =

(−1, b, a) ∈ [Y2(x)]∗ = R3; then (1) gives two real fixed point equation of
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degree 2 (2-RFPE) with exactly 2 real fixed points and exact real FPP functions

satisfying the equations

−k2x2 + (2k +m)x− 1 = 0 (2a)

k2x2 + (2k +m)x+ 1 = 0 (2b)

for some m > 0 ∈ R. (From the above two equations one can get the exact

real fixed point function f(x) with exactly two fixed points.)

Proof. For any A(x) = (−1, b, a) ∈ [Y2(x)]∗ = R3 and [f(x)] = (1, x, x2) ∈ R3,

(1) gives the equation

ax2 + bx− 1 = 0 (3)

which has the real roots if b2 > 4a. Choose a = −k2, to get b2 > 4k2, i.e.,

b > 2k or b < −2k, implying b = 2k +m or b = −2k −m for some m > 0.

(a) Putting a = −k2 and b = 2k +m in equation (3), we obtain

−k2x2 + (2k +m)x− 1 = 0.

(b) Putting a = −k2 and b = −(2k +m) in equation (3), we obtain

k2x2 + (2k +m)x+ 1 = 0.

This completes the proof. �

Theorem 2.3. For A(x) = (−1, c, b, a) ∈ [Y3(x)]∗ = R4 and [f(x)] =

(1, x, x2, x3), the equation (1) has a real point solution x = α = k2 > 0

for some k 6= 0; this is a fixed point of the real fixed point function f(x). If

the function given in the equation (1) has the representation

〈A(x), [f(x)]〉 = (x− α)(px2 + qx+ r)

where p = β2 > 0, r = γ2 ∈ R with γ2 = 1/α, q = 2βγ +m or q = −2βγ −m
for some β > 0, γ > 0 and m > 0, then real algebraic fixed point equations of
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degree 3 are

β2x3 + (2βk−1 − k2 +m)x2 +
(
k−2 − 2k2βk−1 − k2m

)
x− 1 = 0 (4a)

β2x3 + (−2βk−1 − k2 +m)x2 +
(
k−2 + 2k2βk−1 − k2m

)
x− 1 = 0 (4b)

(From the above two equations one can get the exact real fixed point function

f(x) with exactly three fixed points.)

Proof. Since α = k2 is a real fixed point of the function f(x) which is a solution

of the equation

〈A(x), [f(x)]〉 = (x− α)(px2 + qx+ r) = 0, (5)

implying

px2 + qx+ r = 0

which gives two real roots if the discriminant D = q2 − 4pr > 0, i.e., q > 2βγ

and q < −2βγ for p = β2 > 0, r = γ2 ∈ R. Thus q = 2βγ + m and

q = −2βγ −m for some m > 0.

(a) Putting p = β2 > 0, r = γ2 ∈ R and q = 2βγ + m in equation (1), we

obtain

(x− α)(β2x2 + (2βγ +m))x+ γ2 = 0 (6)

(b) Putting p = β2 > 0, r = γ2 ∈ R and q = 2βγ + m in equation (1), we

obtain

(x− α)(β2x2 − (2βγ +m))x+ γ2 = 0. (7)

The equations 6 and 7 are the 3-exact real algebraic fixed point equation of

degree 3. Thus

(a) for α = k2 and γ2 = 1/k2, k > 0, q = 2βγ + m, (6) gives the exact real

algebraic fixed point equation with degree 3 as

β2x3 + (2βk−1 − k2 +m)x2 +
(
k−2 − 2kβ − k2m

)
x− 1 = 0, (8)



82 P. K. Das

(b) for α = k2 and γ2 = 1/k2, k > 0, q = −(2βγ+m), (7) gives the exact real

algebraic fixed point equation with degree 3 as

β2x3 + (−2βk−1 − k2 +m)x2 +
(
k−2 + 2kβ − k2m

)
x− 1 = 0 (9)

which completes the proof of the theorem. �

2.2. Examples. Theorem 2.2 and Theorem 2.3 are illustrated by the following

examples:

Example 2.4.

(i) For m = 1, k = 1, equation (2a) gives the real fixed point equation of

degree 2 as

−x2 + 3x− 1 = 0

which has exactly two real fixed points as (3 ±
√

5)/2. From the above

equation, the exact fixed point function f(x) can be obtained.

(ii) For m = 1, k = 2, equation (2a) gives the real fixed point equation of

degree 2 as

−4x2 + 5x− 1 = 0

which has exactly two real fixed points as x1 = 0.25 and x2 = 1. From

the above equation, the exact fixed point function f(x) can be obtained.

Example 2.5. For m = 1 choose α = β = 1; we get γ = 1, q = 3, p = 1 and

r = 1. Putting the value in the equation (4a), we get

(x− 1)(x2 + 3x+ 1) = 0⇒ x3 + 2x2 − 2x− 1 = 0

which is the exact real algebraic fixed point equation with degree 3 and

has exactly three real solutions as x1 = 1, x2 = −2.618033989 and x3 =

−0.3819660113 which are the fixed point of some function f(x).
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3. Study using Legendre Polynomials

Let L be the set of all Legendre polynomials and Pk(x) ∈ L be the Legendre

polynomial of degree k, bk ∈ R for each k and

Pn(x) =

{
y ∈ R : y = w(x) =

n∑
k=0

bkPk(x)

}
.

Each y ∈ Yn(x) can be expressed as

y = pn(x) =
n∑

k=0

akx
k =

n∑
k=0

bkPk(x) ∈ Pn(x)

for some bk ∈ R, k = 0, 1, · · · , n, implying the basis for both the polynomial

spaces Yn(x) and Pn(x) are same spaces. and

[Pn(x)] =
{

[w(x)] = (P0(x), P1(x), · · · , Pn(x)) ∈ Rn+1 :, Pk(x) ∈ L, 0 ≤ k ≤ n
}
,

then [Yn(x)] and [Pn] are equivalence spaces. The dual of [Pn(x)] is defined

by

[Pn(x)]∗ =

{
β = (β0, β1, · · · , βn) ∈ Rn+1 : β[w(x)] =

n∑
k=0

βkPk(x) = y(x)

}
and its bidual is defined by

[Pn(x)]∗∗ =

{
[w] = (P0(x), · · · , Pn(x)) ∈ Rn : β · [w(x)] =

n∑
k=0

βkPk(x) = y(x)

}
for all x ∈ R. We consider the pairing 〈h,w〉∗ that evaluates the value of

h ∈ [Pn(x)]∗ at f ∈ [Pn(x)]. Assume that the mapping B : R → [Pn(x)]∗ is

defined by

B(x) = (β0, β1, · · · , βn) ∈ [Pn(x)]∗ = Rn+1

for each x ∈ K. Now the canonical embedding J1 : [Pn(x)] → [Pn(x)]∗∗

(continuous or discontinuous map) defined by

J1([w(x)])(β) =
n∑

k=0

βkPk(x) = y(x) = 〈B(x), [w(x)]〉∗
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is a homeomorphism for βk ∈ R, x ∈ R. Hence we obtain the relation

〈A(x), [y(x)]〉 =
n∑

k=0

αkyk(x)

q

y(x)

q
n∑

k=0

βkPk(x) = 〈B(x), [w(x)]〉∗

Hence the Legendre polynomial equation for n-exact fixed point is

〈B(x), [w(x)]〉∗ =

n∑
k=0

βkPk(x) = 0 (10)

for each x ∈ R.

Theorem 3.1. For k 6= 0 and m > 0, assume that

B(x) =

(
k2

3
, 2k ∓m,−2k2

3

)
∈ [P2(x)]∗ = R3; [B(x)] = (P0(x), P1(x), P2(x)) ,

then (10) gives two real fixed point equation of degree 2 (2-RFPE) with exactly

2 real fixed points and exact real FPP functions satisfying the equations

−2k2

3
P2(x) + (2k +m)P1(x)−

(
1 +

k2

3

)
P0(x) = 0 (11a)

2k2

3
P2(x) + (2k +m)P1(x) +

(
1 +

k2

3

)
P0(x) = 0 (11b)

for some m > 0 ∈ R. From the above two equations one can get the exact real

fixed point function f(x) with exactly two fixed points.

Proof. By using Theorem 2.2, we have A(x) = (−1, b, a) ∈ [Y2(x)]∗ = R3, the

basis element is [f(x)] = (1, x, x2) ∈ R3 associates to the 2-exact fixed point

equations as

−k2x2 + (2k +m)x− 1 = 0

k2x2 + (2k +m)x+ 1 = 0.
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According to Theorem 2.2, we have

(a) for a = −k2 and b = 2k +m, equation (3) gives

−k2x2 + (2k +m)x− 1 = 0,

implying

−2k2

3
P2(x) + (2k +m)P1(x)−

(
1 +

k2

3

)
P0(x) = 0,

i.e.,

〈B(x), [w(x)]〉∗ = 0

whereB(x) =
(
−
(

1 + k2

3

)
, 2k +m,−2k2

3

)
and [w(x)] = (P0(x), P1(x), P2(x));

(b) for a = −k2 and b = −(2k +m), equation (3) gives

k2x2 + (2k +m)x+ 1 = 0,

implying

2k2

3
P2(x) + (2k +m)P1(x) +

(
1 +

k2

3

)
P0(x) = 0

where B(x) =
(

1 + k2

3 , (2k +m), 2k
2

3

)
and [w(x)] = (P0(x), P1(x), P2(x)).

This completes the proof. �

Theorem 3.2. For some k 6= 0, m > 0 and β ∈ Z+, assume that

y(x) = 〈A(x), [y(x)]〉 = −1 + a1x+ a2x
2 + a3x

3

where A(x) = (−1, a1, a2, a3), a1 = k−2 ∓ 2k2βk−1 − k2m, a2 = ±2βk−1 −
k2 +m and a3 = β2, β ∈ Z+, the positive integer set. Then

B(x) = (β0, β1, β2, β3) ∈ [P3(x)]∗ = R4

and [w(x)] = (P0(x), P1(x), P2(x), P3(x)), the real algebraic fixed point equa-

tions (10) of degree 3 are

y = w(x) = 〈B(x), [w(x)]〉 = β0P0(x) + β1P1(x) + β2P2(x) + β3P3(x) = 0

where β0 = −1 + a2
3 , β1 = a1 + 3a3

5 , β2 = 2a2
3 and β3 = 2a3

5 .
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Proof. Given for some k 6= 0, m > 0 and β ∈ Z+, assume that

y(x) = 〈A(x), [y(x)]〉 = −1 + a1x+ a2x
2 + a3x

3

whereA(x) = (−1, a1, a2, a3), a1 = k−2∓2k2βk−1−k2m, a2 = ±2βk−1−k2+m

and a3 = β2, i.e.,

(1) for a1 = k−2− 2k2βk−1− k2m, a2 = 2βk−1− k2 +m and a3 = β2, the

3-exact real fixed point equation of degree 3 is

y(x) = −1 + a1x+ a2x
2 + a3x

3

which can be written as

y = w(x) = β0P0(x) + β1P1(x) + β2P2(x) + β3P3(x) = 0

where β0 = −1 + a2
3 , β1 = a1 + 3a3

5 , β2 = 2a2
3 and β3 = 2a3

5 .

(2) For a1 = k−2 + 2k2βk−1 − k2m, a2 = −2βk−1 − k2 +m and a3 = β2,

the 3-exact real fixed point equation of degree 3 is

y(x) = −1 + a1x+ a2x
2 + a3x

3

which can be written as

y = w(x) = β0P0(x) + β1P1(x) + β2P2(x) + β3P3(x) = 0

where β0 = −1 + a2
3 , β1 = a1 + 3a3

5 , β2 = 2a2
3 and β3 = 2a3

5 .

which completes the proof of the theorem. �

4. Fixed point using VIP

Let X = R and K ⊂ X be a nonempty convex compact subset of X. Let

f : K → R be an n-exact real fixed point function, i.e., f ∈ [Fn(x)]. By fixed

point theory, equation (1) can be written as

x = F (x)

where F (x) = x− ρ 〈A(x), [f(x)]〉 satisfying∣∣∣∣dFdx
∣∣∣∣ =

∣∣∣∣ ddx (x− ρ 〈Ax, [f(x)]〉)
∣∣∣∣ < 1
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for all x ∈ [a, b] with the condition 〈A(a), [f(a)]〉 〈A(b), [f(b)]〉 < 0.

The iterative method is

xn+1 = F (xn), n = 0, 1, · · · ,

i.e.,

〈xn+1 − xn, v − xn〉+ ρn 〈An(x), v − xn〉 ≥ 0

An(x) = 〈A(xn), [f(xn)]〉

for n = 0, 1, 2, · · · and for all v ∈ K which is the numerical method for

variational inequality problem to find the fixed point of the real function f(x)

with real coefficients where the step length is

ρn ≤ −min
v∈X

〈xn+1 − xn, v − xn〉
〈An(x), v − xn〉

An(x) = 〈A(xn), [f(xn)]〉

for each step n = 0, 1, 2, · · · .

4.1. Numerical Method for the Examples 2.4 and 2.5.

(1) In Example 2.4(i), if we take f(x) = −x2 + 3x− 1

then we get two real fixed points x1 and x2 in the interval [0, 3]. To

use variational inequality problem, we have F (x) = x−f(x) = x2−2x+

1 satisfying the condition |F ′(x)| = |2x− 2| < 1, i.e., |x− 1| < 1/2,

i.e., 0.5 < x < 1.5 which is valid. The step wise algorithm for the

numerical variational equality method is

(a) Choose ρ0 > 0, any x0 ∈ [0, 1] = K1 for x1 and x0 ∈ [2, 3] = K2

for x2,

(b) for n = 0, 1, 2, · · · , compute

xn+1 = F (xn)

ρn = −min
v∈X

(xn+1 − xn)(v − xn)

(−x2n + 3xn − 1)(v − xn)
for all v ∈ Ki, i = 1, 2.

xn = xn + ρn
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(2) In Example 2.5, if we take f(x) = x3+2x2−2x−1 then f(−3)f(−2) <

0, f(−1)f(0) < 0 and f(0)f(2) < 0, so there are three real fixed points

x1, x2 and x3 in the interval [−3, 2]. To use variational inequality

problem, we have F (x) = x− f(x) = −x3− 2x2 + 3x+ 1 satisfying the

condition |F ′(x)| =
∣∣−3x2 − 4x+ 3

∣∣ < 1, i.e., −1 < −3x2−4x+3 < 1.

Algorithm for the numerical variational equality method, the step wise

algorithm is

(a) Choose ρ0 > 0, any x0 ∈ [−3,−2] = K1 for x1, x0 ∈ [−1, 0] = K2

for x2 and x0 ∈ [0, 2] = K3 for x2

(b) for n = 0, 1, 2, · · · , compute

xn+1 = F (xn)

ρn = −min
v∈X

(xn+1 − xn)(v − xn)

(x3n + 2x2n − 2xn − 1)(v − xn)
for all v ∈ Ki, i = 1, 2.

xn = xn + ρn

4.2. Companion Matrix and Exact real fixed point function of higher

degree n ≥ 3. Since f(x) is a real algebraic polynomial of degree n, it can

be written as

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 = pn(x)

where ai’s are real numbers. The polynomial function pn(x) can be expressed

associated with the real Frobenius companion matrix [4] A defined by

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 .
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Thus the characteristic polynomial det(A− xI) is ±pn(x) ([4]), i.e.,

pn(x) =

∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0
0 x −1 · · · 0
...

...
...

. . . 0
0 0 0 · · · −1
−a0 −a1 −a2 · · · x+ an−1

∣∣∣∣∣∣∣∣∣∣∣
.

Since x is the eigen value of A, then x satisfies the polynomial equation pn(x) =

0 (Mora [4]). Now the companion matrix A is diagonalizable, so the diagonal

elements of the eigen values of A which are the roots of pn(x). Hence these

eigen values are fixed points of the n-exact real fixed point function f(x). If y

is the eigen vector corresponding to eigen value x of A, then the eigen values

of the companion matrix can be obtained using power method, i.e.,

yn+1 = Ayn = xnyn, n = 0, 1, 2, · · · ,

where xn is the eigen value of the matrix A in (n + 1)th step. The above

numerical method can be expressed as a numerical method of a variational

inequality problem to find yn ∈ V , a closed convex subset in Rn and xn ∈ R
satisfying

〈yn+1 − yn, v − yn〉+ ρn 〈F (yn), z − yn〉 ≥ 0

and F (yn) = (I −A)yn for n = 0, 1, 2, · · · for all z ∈ V . The iterative step is

n = 0, 1, 2, · · ·
yn+1 = Ayn = xny

∗
n

yn = yn∗
F (yn) = (I −A)yn
ρn = −min

z∈V
〈yn+1−yn,z−yn〉
〈F (yn),z−yn〉

xn+1 = xn + ρn, f(xn+1) = pn(xn)

Acknowledgment. I thank the anonymous reviewers for their careful reading

of our manuscript and their many necessary suggestions to improvise the stan-

dard of the manuscript.



90 P. K. Das

References

[1] H. Chen, An Improved Two-Step Method for Generalized Variational Inequalities, Vol-
ume 2013, Article ID 727892, 8 pages, https://doi.org/10.1155/2013/727892

[2] P. K. Das, An iterative method for T -η-invex function in Hilbert space and Coincidence
Lifting Index Theorem for Lifting function and covering maps, Advances in Nonlinear
Variational Inequalities, 13(2), 2010, 11 - 36.

[3] P. K. Das,An iterative method for (AGDDV IP ) in Hilbert space and the Homology
theory to study the (GDDCPn) in Riemannian n-manifolds in the presence of fixed
point inclusion, European Journal of Pure and Applied Mathematics, 4(4), 2011, 340 -
360.

[4] Teo Mora - Solving Polynomial Equation Systems III Volume 3, Algebraic Solving-
Cambridge University Press (2015)

[5] P. K. Das and A. Behera, An application of coincidence lifting index theorem in
(GHVIP) and the variable step iterative method for (Tη; ξθ)-invex function, Advances
in Nonlinear Variational Inequalities, 14(1), 2011, 73 - 94.

[6] D. A. Nomirovskii, B. V. Rublyov and V. V. Semenov, Convergence of Two-Stage
Method with Bregman Divergence for Solving Variational Inequalities, Cybernetics and
Systems Analysis, 55 (2019), 359368. https://doi.org/10.1007/s10559-019-00142-7

[7] G. Stampachchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad.
Sci. Paris, 258 (1964), 4413 - 4416.


