

A GENERALISATION OF THE CONCEPT OF BANACH LIMITS

*G.Das, ** Ajaya Kumar Singh

*Dharma Vihar, Khandagiri, Bhubaneswar-751030, Odisha, India
Email: gdas100@yahoo.com

** Department of Mathematics, P.N.(Auto) College, Khurda
Email: ajayasingh12@gmail.com

Abstract The object of the present paper is to generalise the concept of Banach limit by using weights to the sequence.

Keywords and phrases Hahn-Banach Theorem, Banach limit, almost convergence.

2000 Mathematics Subject Classification No 40A.

1. BANACH LIMITS

Let l_∞ be the space of all bounded sequences $x = (x_n)_{n \geq 0}$ of real numbers which is a Banach space with the norm

$$\|x\|_c = \sup_{0 \leq t \leq 2\pi} |x_n|.$$

A Banach limit [1] is any linear functional L defined on l_∞ such that

- (i) $L(x) \geq 0$ if $x_n \geq 0$ for $n \geq 0$
- (ii) $L(x) = L(\sigma x)$ where σ is a shift operator defined by $\sigma x = \sigma(x_0, x_1, \dots) = (x_1, x_2, \dots)$ and
- (iii) $L(e) = 1$ where e is the vector defined by $e = (1, 1, 1, \dots)$.

Let p be a sublinear functional defined by

$$p(x) = \overline{\lim}_p \sup_n \frac{1}{p} \sum_{i=0}^p x_{i+n}. \quad (1)$$

By using the functional the existence of Banach limit has been proved by use of the famous Hahn-Banach Theorem (see Simmons[4], Das[2]). However Banach [1] and Lorentz [3] took a different functional which was somewhat difficult to handle. It has been demonstrated in Das[2], Simmons[4] that L is a Banach limit on l_∞ if and only if

$$-p(-x) \leq L(x) \leq p(x), x \in l_\infty \quad (2)$$

A sequence $x \in l_\infty$ is said to be almost convergent to the number s if and only if $L(x) = s$ that is , if the Banach limit of x is unique(see Lorentz[3]). In general, Banach limit is not unique. It follows from (2) that Banach limit of x is unique if and only if

$$p(x) = -p(-x) \quad (3)$$

But it is seen that (3) is equivalent to saying that

$$\lim_{p \rightarrow \infty} \frac{x_n + x_{n+1} + \cdots + x_{n+p-1}}{p} = s \quad (4)$$

uniformly in n (see Lorenz [3]). Let \hat{c} denote the set of almost convergent sequences

2. GENERALISED BANACH LIMITS

The object of the present paper is to introduce a generalisation of Banach limit in the following way. For any sequence $q_n \geq 0$, with $Q_n = q_0 + q_1 + \cdots + q_n > 0$ Define a new sublinear functional on l_∞ by

$$\psi(x) = \overline{\lim}_p \sup_n \frac{1}{Q_{n+p} - Q_{n-1}} \sum_{i=0}^p q_{i+n} x_{i+n} \quad (5)$$

provided that for $p \geq 0$,

$$Q_{n+p} - Q_{n-1} > 0 \quad (6)$$

It can be easily verified that ψ is sublinear functional on l_∞ . Now by Hahn-Banach theorem there exist a linear functional ϕ on l_∞ such that

$$\phi(x) \leq \psi(x), \forall x \in l_\infty \quad (7)$$

As ϕ is linear and is sublinear, it follows from (7) that

$$-\psi(-x) \leq \phi(x) \leq \psi(x), \forall x \in l_\infty \quad (8)$$

where

$$-\psi(-x) = \underline{\lim}_p \inf_n \frac{1}{Q_{n+p} - Q_{n-1}} \sum_{i=0}^p q_{i+n} x_{i+n} \quad (9)$$

We now define the generalised Banach limit or $\psi-$ limit in the following manner.

Definition ϕ is called $\psi-$ limit on l_∞ if

$$\phi(x) \leq \psi(x), \forall x \in l_\infty$$

Note that

$$x_n \geq 0 \Rightarrow \psi(x) \geq 0, -\psi(-x) \geq 0$$

Hence it follows from (8) that $x \geq 0 \Rightarrow \psi(x) \geq 0 \Rightarrow -\psi(-x) \geq 0 \Rightarrow \phi(x) \geq 0$

If $x = e = (1, 1, 1, \dots)$ then $\psi(e) = 1 = -\psi(-e)$ so that $\phi(e) = 1$. Thus a linear functional ϕ dominated by ψ satisfies condition (i) and (ii) of Banach limit. $\psi-$ limit is a Banach limit if the linear functional ϕ defined by ψ is shift invariant, that is $\phi(\sigma x) = \phi(x)$.

Now

$$\psi(x - x) = \overline{\lim}_p \sup_n \frac{1}{Q_{n+1} - Q_{n-1}} \sum_{i=0}^p q_{i+n} (x_{i+n+1} - x_{i+n}) \quad (10)$$

Note that, by Abel's transformation

$$\begin{aligned}
& \sum_{i=0}^p q_{i+n} (x_{i+n+1} - x_{i+n}) \\
&= \sum_{i=0}^{p-1} (q_{i+n} - q_{i+1+n}) \sum_{r=0}^i (x_{r+n+1} - x_{r+n}) + q_{p+n} \sum_{r=0}^p (x_{r+n+1} - x_{r+n}) \\
&= \sum_{i=0}^{p-1} (q_{i+n} - q_{i+1+n}) (x_{r+n+1} - x_{r+n}) + q_{p+n} (x_{p+n+1} - x_n) \\
&\leq 2\|x\| \sum_{i=0}^{p-1} |q_{i+n} - q_{i+1+n}| + 2\|x\| q_{p+n}
\end{aligned} \tag{11}$$

it follows from (10) and (11) that

$$\begin{aligned}
|\psi(\sigma x - x)| &\leq 2\|x\| \overline{\lim_p} \sup_n \frac{\sum_{i=0}^{p-1} |q_{i+n} - q_{i+1+n}|}{Q_{n+p} - Q_n} \\
&\quad + 2\|x\| \overline{\lim_p} \sup_n \frac{q_{p+n}}{Q_{n+p} - Q_n}
\end{aligned} \tag{12}$$

We are now in a situation to prove the following theorem .

Theorem 1. *Let q_n satisfy the following additional conditions :*

$$\frac{q_{p+n}}{Q_{n+p} - Q_n} \rightarrow 0 \text{ as } p \rightarrow \infty, \text{ uniformly in } n \tag{13}$$

$$\frac{\sum_{i=0}^{p-1} |q_{i+n} - q_{i+1+n}|}{Q_{n+p} - Q_n} \rightarrow 0 \text{ as } p \rightarrow \infty; \text{ uniformly in } n \tag{14}$$

Then the sublinear functional ψ generates the Banach limit ; that is any linear functional φ dominated by ψ is a Banach limit .

Proof: We have only to show that ϕ is shift invariant. It follows from (12) that $|(\sigma x - x)| = 0$ by virtue of the hypothesis (13) and (14). Similarly we can show that $|(x - \sigma x)| \leq 0$. This prove that $\phi(\sigma x - x) \leq (\sigma x - x) = 0$. Similarly $\phi(x - \sigma x) \leq 0$; this proves that $\phi(x) = \phi(\sigma x)$.

Thus ϕ is σ - invariant . This completes the proof of the Theorem 1.

Now the question can be raised if ψ dominates Banach limit , that is , if , ϕ is a Banach limit , then can we show that $\phi \leq \psi$? To the end we prove

Theorem 2. ψ dominates Banach limits .

Proof: We first observe that

$$\frac{\sum_{i=0}^p q_{i+n}}{Q_{n+p} - Q_{n-1}} = 1$$

Hence

$$\begin{aligned} \phi(x) &= \frac{\sum_{i=0}^p q_{i+n}}{Q_{n+p} - Q_{n-1}} \phi(x) \\ &= \frac{1}{Q_{n+p} - Q_{n-1}} \sum_{i=0}^p q_{i+n} \phi(\sigma^i x) \\ &= \phi \left(\frac{1}{Q_{n+p} - Q_{n-1}} \sum_{i=0}^p q_{i+n} x_{i+n} \right) \\ &\leq \sup_n \left[\frac{1}{Q_{n+p} - Q_{n-1}} \sum_{i=0}^p q_{i+n} x_{i+n} \right] \\ &\leq \overline{\lim}_p \sup_n \frac{1}{Q_{n+p} - Q_{n-1}} \sum_{i=0}^p q_{i+n} x_{i+n} = \psi(x) \end{aligned}$$

The above steps follow by using the Banach limit properties of ϕ . This proves Theorem 2 . By using Theorem 1 as Theorem 2, we obtain

Theorem 3. The sublinear functional both generates and dominates Banach limits provided that $\{q_i\}$ satisfies the conditions (13) and (14).

As a corollary to Theorem 3, we now obtain .

Theorem 4. A sequence $x \in \infty$ is almost convergent if and only if

$$\frac{q_n x_n + q_{n+1} x_{n+1} + \cdots + q_{n+p} x_{n+p}}{q_n + q_{n+1} + \cdots + q_{n+p}}$$

converges to a limit s as $p \rightarrow \infty$ uniformly in n , when q_n satisfies conditions (13) and (14).

Proof Since the Banach limit ϕ is dominated and generated by ψ (by Theorem 3), it follows that all Banach limits φ are given by $\phi(x) \leq \psi(x)$ and this implies that $-\psi(-x) \leq \phi(x) \leq \psi(x)$ Now ϕ can take any value in the interval

$[-\psi(-x), \psi(x)]$ as generated by Hahn-Banach theorem, that is why Banach limit is not necessarily unique. But in the case $-\psi(-x) = \psi(x)$ then φ has no option except to take unique value. Thus given $x \in \infty$ has unique Banach limit if and only if $-\psi(-x) = \psi(x) = s$ and this is equivalent to the statement of Theorem 4 .

This completes the proof .

By taking $q_n = 1$ for all n , we obtain the following famous theorem of Lorentz.

Corollary 1 A sequence $x \in \infty$ is almost convergent to s if and only if $\frac{x_n+x_{n+1}+\dots+x_{n+p}}{p+1} \rightarrow s$ as $n \rightarrow 1$ uniformly in n

REFERENCES

- [1] Banach, S., Theories des operations Linearies, *Warsaw*,1932.
- [2] Das, G., Banach limits and other limits, *Jour. London math. soc.*, 1973.
- [3] Lorentz, G.G., A contribution to the theory of divergent sequences, *Acta math.*, 80, 167-190, 1948.
- [4] Simmons,S., Banach limits, infinite matrices and sublinear functionals, *math. Analysis and applications*, Syracuse university, 26, 640-655, 1969.