

RANDOM TRIGONOMETRIC INTERPOLATION

*Jagabandhu Sahoo

*Lecturer in Mathematics, Anandapur College, Anandapur, Odisha, India

Abstract We show that the random trigonometric interpolation polynomial associated with the stochastic process of independent increment having the semi-table distribution converges in the mean to the stochastic integral.

Keywords and phrases Trigonometric polynomial, Independent increment, Stochastic process, Semistable distribution and stochastic integral.

2010 Mathematics Subject Classification No 41A

1. INTRODUCTION

Random trigonometric interpolation has been studied earlier in Context of image reconstruction with noise (cf. Dash and Pattanayak). In this they considered trigonometric interpolation polynomials

$$I_n(f) = \frac{2}{2n+1} \sum_{j=0}^{2n} f(x_j) D_n(x - x_j) \quad (1)$$

Which can be rewritten as

$$I_n(x, f) = \sum_{k=-n}^n C_k^{(n)} e^{2\pi i k x} (\text{cf. Zygmund [.], p. 8 Vol II}) \quad (2)$$

What Dash et.al. (Loc.cit) considered was to study the random trigonometric polynomial

$$\sum_{k=-n}^n X_k C_k^{(n)} e^{2\pi i k x} \quad (3)$$

where $(X_k)_{k=-\infty}^{\infty}$ are random variables defined as

$$X_k = \int_0^1 e^{-2\pi i k t} dX(t)$$

Where $X(t)$ is a stable process with index $\alpha \in (1, 2)$. They were able to show that (3) converges in the mean to a stochastical integral.

What we try in this work is to see if a similar result holds for a semistable process.

Let $X(t)$ be a stochastic process with independent increment $X(t_2) - X(t_1)$ having the characteristics function $e^{-|t_1-t_2|(c+\cos \log |u|)|u|^\alpha}$ for $f \in L^\alpha[a, b]$ where $1 < \alpha \leq 2$ we can show that it is possible to define the stochastic integral $\int_a^b f(t) dX(t)$ which has the characteristics function

$$e^{-|u|^\alpha \left(c \int_a^b |f(t)|^\alpha dt + \int_a^b \cos(\log |f(t)| + \log |u|) |f(t)|^\alpha dt \right)}.$$

The polynomial corresponding to the periodic function $f(x)$ at the points.

$$x_j^{(n)} = x_0^{(n)} + \frac{2\pi j}{2n+1} \quad (j = 0, 1, 2, 3, \dots, 2n) \quad (4)$$

is called the nth interpolating polynomial of f .

The interpolating trigonometric polynomial coincides with the function f at these points is given by

$$I_n(x, f) = \frac{2}{2n+1} \sum_{j=0}^{2n} f(x_j) D_n(x - x_j) \quad (5)$$

Where D_n is the Dirichlet Kernel given by

$$D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos kx = \frac{\sin(n + \frac{1}{2})x}{2 \sin \frac{x}{2}} \quad (6)$$

We can re-arrange the item in (2) and write

$$I_n(x, f) = \sum_{k=-n}^{+n} C_k^{(n)} e^{2\pi i k x} \quad (\text{cf Zygmund [4] p-8 vol.II}) \quad (7)$$

The coefficients $C_k^{(n)}$ can be expressed as Fourier Stieltjes integrals.

Now we can write

$$I_{n,v}(x, f) = \sum_{k=-v}^v C_k^{(n)} e^{2\pi i k x} \quad (8)$$

To get to our result we need two definitions, one Lemma (Chow and Teicher [1] p-285) and result (cf Zygmund [4] vol. 11, p-30).

Definition 1.1

A sequence of random variable X_n is said to converge in the mean to the random variable X if $\lim_{n \rightarrow \infty} E|X_n - X| = 0$.

Definition 1.2

A sequence of random variable X_n is said to converge probability to a random variable X if $\lim_{n \rightarrow \infty} P\{|X_n - X| \geq \epsilon\} = 0$ for every $\epsilon > 0$.

Lemma 1.3

For any random variable X with the characteristics function Ψ , the absolute moment of the random variable X is given by

$$E|X| = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{1 - \text{Real}\Psi(t)}{t^2} dt$$

Again it is known (cf Zygmund [4] vol. 11 p-30) that for $f \in L^p[0, 2\pi] p > 1$,

$$\lim_{n \rightarrow \infty} \int_0^{2\pi} |I_{n,v}(t - u) - f(t - u)|^p dt = 0$$

2. OUR MAIN RESULTS

Theorem 2.1

The random trigonometric polynomial $\sum_{k=-n}^{+n} X_k C_k^{(n)} e^{2\pi i k x}$ where $X_k = \int_0^1 e^{-2\pi i k t} dX(t)$ and $X(t)$ is a stochastic process with independent increment having the semi-stable distribution of index α where $1 < \alpha \leq 2$ with the characteristics function $e^{-|t_1 - t_2|(c + \cos \log |u|)|u|^\alpha}$ converges in the mean to the stochastic integral $\int_0^1 f(t - u) dX(u)$ for $f \in L^\alpha[0, 1]$.

Proof of Theorem 2.1

$$\begin{aligned}
\sum_{k=-v}^v X_k C_k^{(n)} e^{2\pi i k t} &= \sum_{k=-v}^v C_k^{(n)} \int_0^1 e^{-2\pi i k u} dX(u) e^{2\pi i k t} \\
&= \int_0^1 \sum_{k=-v}^v C_k^{(n)} e^{2\pi i k (t-u)} dX(u) \\
&= \int_0^1 I_{n,v}(t-u) dX(u)
\end{aligned}$$

Now

$$\begin{aligned}
&E \left| \int_0^1 I_{n,v}(t-u) dX(u) - \int_0^1 f(t-u) dX(u) \right|^\alpha \\
&= \frac{2}{\pi} \int_{-\infty}^{+\infty} \left(\frac{1 - e^{-(c+\cos \log |u|)|u|^\alpha} \int_0^1 |I_{n,v}(t-u) - f(t-u)|^\alpha dt}{u^2} \right) du \\
&= \frac{4}{\pi} \int_0^1 \left(\frac{1 - e^{-(c+\cos \log |u|)|u|^\alpha} \int_0^1 |I_{n,v}(t-u) - f(t-u)|^\alpha dt}{u^2} \right) du \\
&+ \frac{4}{\pi} \int_1^\infty \left(\frac{1 - e^{-(c+\cos \log |u|)|u|^\alpha} \int_0^1 |I_{n,v}(t-u) - f(t-u)|^\alpha dt}{u^2} \right) du \\
&(1 - e^{-x} < x \text{ for every } x > 0) \\
&\leq \frac{4}{\pi} \int_0^1 (c+1)|u|^{\alpha-2} du \int_0^1 |I_{n,v}(t-u) - f(t-u)|^\alpha dt \\
&+ \frac{4}{\pi} \int_1^\infty \left(\frac{1 - e^{-(c+\cos \log |u|)|u|^\alpha} \int_0^1 |I_{n,v}(t-u) - f(t-u)|^\alpha dt}{u^2} \right) du \\
&= \frac{4}{\pi} \times \frac{(c+1)}{\alpha-1} \int_0^1 |I_{n,v}(t-u) - f(t-u)|^\alpha du
\end{aligned}$$

We know (cf Zygmund [4] vol. 11, p-30) that for $f \in L^p[0, 2\pi]$, $p > 1$,

$$\lim_{n \rightarrow \infty} \int_0^1 |I_{n,v}(t-u) - f(t-u)|^p dt = 0.$$

Hence the result follows. We can, with much less mechanism, prove

Theorem 2.2

Let f be any continuous function with modulus of continuity $0\left(\frac{1}{\log \delta^{-1}}\right)$. Let the n th interpolating polynomial of f be given by

$$I_n(x, f) = \sum_{k=-n}^{+n} C_k^{(n)} e^{2\pi i k x}$$

Then the random interpolating polynomial

$$\bar{I}_{n,v}(X) = \sum_{k=-v}^v C_k^{(n)} A_k e^{2\pi i k x}$$

$$\text{with } A_k = \int_0^1 e^{-2\pi i k t} dX(t)$$

where $X(t)$ is stochastic process with independent increment $X(t_2) - X(t_1)$ of index $\alpha \in (1, 2]$ having the characteristics function $e^{-\int_a^b (c + \cos \log(|u| |f(t)|)) |f(t)|^\alpha dt |u|^\alpha}$ converges in probability to the stochastic integral $\int_0^1 f(t - u) dX(u)$.

Proof of Theorem 2.2

We know (cf Mishra and Samal [3]) that

$$P \left\{ \left| \int_a^b f(t) dX(t) \right| \geq \epsilon \right\} \leq \frac{k}{\epsilon^\alpha} \int_a^b |f(t)|^\alpha dt$$

Now

$$\begin{aligned} \bar{I}_{n,v} &= \sum_{k=-v}^v C_k^{(n)} A_k e^{2\pi i k t} \\ &= \sum_{k=-v}^v C_k^{(n)} \int_0^1 e^{-2\pi i k u} dX(u) e^{2\pi i k t} \\ &= \int_0^1 \sum_{k=-v}^v C_k^{(n)} e^{2\pi i k (t-u)} dX(u) \\ &= \int_0^1 I_{n,v}(t-u) dX(u) \end{aligned}$$

Now

$$\begin{aligned}
 & P \left\{ \left| \bar{I}_{n,v}(x) - \int_0^1 f(t-u) dX(u) \right| \geq \epsilon \right\} \\
 &= P \left\{ \left| \int_0^1 I_{n,v}(t-u) dX(u) - \int_0^1 f(t-u) dX(u) \right| \geq \epsilon \right\} \\
 &= P \left\{ \left| \int_0^1 (I_{n,v}(t-u) - f(t-u)) dX(u) \right| \geq \epsilon \right\} \leq \frac{k}{\epsilon^\alpha} \int_0^1 |I_{n,v}(t-u) - f(t-u)|^\alpha du
 \end{aligned}$$

We know (cf Zygmund [4] vol. 11 p-30) that for $f \in L^p[0, 2\pi]$, $p > 1$,

$$\lim_{n \rightarrow \infty} \int_0^{2\pi} |I_{n,v}(t-u) - f(t-u)|^p du = 0$$

Hence the result follows.

Acknowledgement

The author is thankful to Professor S. Pattanayak for useful suggestion.

REFERENCES

- [1] Chow. Y.S. Teicher: *Probability theory*, Springer International edition 1978.
- [2] Dash, S.K., and Pattanayak, S. *Convergence in the mean of some Random Fourier series*, J. Math Annual April 339, 2008, 98-107.
- [3] Dash, M. and Pattanayak, S. , "On Convergence of Random Trigonometric Interpolation Associated with a Stable Process", Bulletin of the Allahabad Mathematical Society 26(1), 2011, 183-188.
- [4] Dash, M. and Pattanayak, S. , "On Convergence in the mean of Random Trigonometric Interpolation Polynomial", Journal of the Orissa Mathematical Society, 30(1), 2011, 108-110.
- [5] Mishra and Samal, *Continuity Properties of Random Fourier stieltjes series*, Bulletin of Calcutta Mathematical Society, 63, 1971, 87-100.
- [6] A. Zygmund: *Trigonometric Series*, Cambridge University Press, 1966.