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Abstract We show that the random trigonometric interpolation polynomial

associated with the stochastic process of independent increment having the

semi-table distribution converges in the mean to the stochastic integral.
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1. Introduction

Random trigonometric interpolation has been studied earlier in Context

of image reconstruction with noise (cf. Dash and Pattanayak). In this they

considered trigonometric interpolation polynomials

In(f) =
2

2n+ 1

2n∑
j=0

f(xj)Dṅ(x− xj) (1)

Which can be rewritten as

In(x, f) =

n∑
k=−n

C
(n)
k e2πikx(cf. Zygmund [ .], p. 8 Vol II) (2)

What Dash et.al. (Loc.cit) considered was to study the random trigonometric

polynomial
n∑

k=−n
XkC

(n)
k e2πikx (3)
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where (Xk)
∞
k=−∞ are random variables defined as

Xk =

∫ 1

0
e−2πiktdX(t)

Where X(t) is a stable process with index α ∈ (1, 2). They were able to show

that (3) converges in the mean to a stochastical integral.

What we try in this work is to see if a similar result holds for a semistable

process.

Let X(t) be a stochastic process with independent increment X(t2)−X(t1)

having the characteristics function e−|t1−t2|(c+cos log |u|)|u|α for f ∈ Lα[a, b]

where 1 < α ≤ 2 we can show that it is possible to define the stochastic

integral

∫ b

a
f(t)dX(t) which has the characteristics function

e
−|u|α

(
c
∫ b
a |f(t)|

αdt+
∫ b
a cos(log |f(t)|+log |u|)|f(t)|αdt

)
.

The polynomial corresponding to the periodic function f(x) at the points.

x
(n)
j = x

(n)
0 +

2πj

2n+ 1
(j = 0, 1, 2, 3, ..., 2n) (4)

is called the nth interpolating polynomial of f .

The interpolating trigonometric polynomial coincides with the function f

at these points is given by

In(x, f) =
2

2n+ 1

2n∑
j=0

f(xj)Dn(x− xj) (5)

Where Dn is the Direchlet Kernel given by

Dn(x) =
1

2
+

n∑
k=1

cos kx =
sin
(
n+ 1

2

)
x

2 sin x
2

(6)

We can re-arrange the item in (2) and write

In(x, f) =

+n∑
k=−n

C
(n)
k e2πikx (cf Zygmund [4] p-8 vol.II) (7)
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The coefficients C
(n)
k can be expressed as Fourier Stieltjes integrals.

Now we can write

In,v(x, f) =
v∑

k=−v
C

(n)
k e2πikx (8)

To get to our result we need two definitions, one Lemma (Chow and Teicher

[1] p-285) and result (cf Zygmund [4] vol. 11, p-30).

Definition 1.1

A sequence of random variable Xn is said to converge in the mean to the

random variable X if lim
n→∞

E|Xn −X| = 0.

Definition 1.2

A sequence of random variable Xn is said to converge probability to a

random variable X if lim
n→∞

P{|Xn −X| ≥ ε} = 0 for every ε > 0.

Lemma 1.3

For any random variable X with the characteristics function Ψ, the absolute

moment of the random variable X is given by

E|X| = 2

π

∫ ∞
−∞

1−RealΨ(t)

t2
dt

Again it is known (cf Zygmund [4] vol. 11 p-30) that for f ∈ Lp[0, 2π]p > 1,

lim
n→∞

∫ 2π

0
|In,v(t− u)− f(t− u)|pdt = 0

2. Our Main Results

Theorem 2.1

The random trigonometric polynomial

+n∑
k=−n

XkC
(n)
K e2πikx

where Xk =

∫ 1

0
e−2πiktdX(t) and X(t) is a stochastic process with indepen-

dent increment having the semi-stable distribution of index α where 1 < α ≤ 2

with the characteristics function e−|t1−t2|(c+cos log |u|)|u|α converges in the mean

to the stochastic integral

∫ 1

0
f(t− u)dX(u) for f ∈ Lα[0, 1].
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Proof of Theorem 2.1

v∑
k=−v

XkC
(n)
k e2πikt =

v∑
k=−v

C
(n)
k

∫ 1

0
e−2πikudX(u)e2πikt

=

∫ 1

0

v∑
k=−v

C
(n)
k e2πik(t−u)dX(u)

=

∫ 1

0
In,v(t− u)dX(u)

Now

E

∣∣∣∣∫ 1

0
In,v(t− u)dX(u)−

∫ 1

0
f(t− u)dX(u)

∣∣∣∣α
=

2

π

∫ +∞

−∞

(
1− e−(c+cos log |u|)|u|α

∫ 1
0 |In,v(t−u)−f(t−u)|

αdt

u2

)
du

=
4

π

∫ 1

0

(
1− e−(c+cos log |u|)|u|α ∫ 1

0 |In,v(t− u)− f(t− u)|αdt
u2

)
du

+
4

π

∫ ∞
1

(
1− e−(c+cos log |u|)|u|α ∫ 1

0 |In,v(t− u)− f(t− u)|αdt
u2

)
du

(1− e−x < x for every x > 0)

≤ 4

π

∫ 1

0
(c+ 1)|u|α−2du

∫ 1

0
|In,v(t− u)− f(t− u)|αdt

+
4

π

∫ ∞
1

(
1− e−(c+cos log |u|)|u|α

∫ 1
0 |Inv(t−u)−f(t−u)|

αdt

u2

)
du

=
4

π
× (c+ 1)

α− 1

∫ 1

0
|In,v(t− u)− f(t− u)|αdu

We know (cf Zygmund [4] vol. 11, p-30) that for f ∈ Lp[0, 2π], p > 1,

lim
n→∞

∫ 1

0
|In,v(t− u)− f(t− u)|pdt = 0.

Hence the result follows. We can, with much less mechanism, prove

Theorem 2.2
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Let f be any continuous function with modulus of continuity 0
(

1
log δ−1

)
.

Let the nth interpolating polynomial of f be given by

In(x, f) =
+n∑

k=−n
C

(n)
k e2πikx

Then the random interpolating polynomial

In,v(X) =
v∑

k=−v
C

(n)
k Ake

2πikx

with Ak =

∫ 1

0
e−2πiktdX(t)

where X(t) is stochastic process with independent increment X(t2)−X(t1) of

index α ∈ (1, 2] having the characteristics function e−
∫ b
a (c+cos log(|u||f(t)|))|f(t)|αdt|u|α

converges in probability to the stochastic integral

∫ 1

0
f(t− u)dX(u).

Proof of Theorem 2.2

We know (cf Mishra and Samal [3]) that

P

{∣∣∣∣∫ b

a
f(t)dX(t)

∣∣∣∣ ≥ ε} ≤ k

εα

∫ b

a
|f(t)|αdt

Now

Īn,v =
v∑

k=−v
C

(n)
k Ake

2πikt

=
v∑

k=−v
C

(n)
k

∫ 1

0
e−2πikudX(u)e2πikt

=

∫ 1

0

v∑
k=−v

C
(n)
k e2πik(t−u)dX(u)

=

∫ 1

0
In,v(t− u)dX(u)
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Now

P

{∣∣∣∣Īn,v(x)−
∫ 1

0
f(t− u)dX(u)

∣∣∣∣ ≥ ε}
=P

{∣∣∣∣∫ 1

0
In,v(t− u)dX(u)−

∫ 1

0
f(t− u)dX(u)

∣∣∣∣ ≥ ε}
=P

{∣∣∣∣∫ 1

0
(In,v(t− u)− f(t− u))dX(u)

∣∣∣∣ ≥ ε} ≤ k

εα

∫ 1

0
|In,v(t− u)− f(t− u)|αdu

Weknow (cf Zygmund [4] vol. 11 p-30)that for f ∈ Lp[0, 2π]p > 1,

lim
n→∞

∫ 2π

0
|In,v(t− u)− f(t− u)|p du = 0

Hence the result follows.
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