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Abstract We show that the random trigonometric interpolation polynomial
associated with the stochastic process of independent increment having the

semi-table distribution converges in the mean to the stochastic integral.
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1. INTRODUCTION

Random trigonometric interpolation has been studied earlier in Context
of image reconstruction with noise (cf. Dash and Pattanayak). In this they

considered trigonometric interpolation polynomials
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Which can be rewritten as
Lz, f) = Y Oe* ke (cf. Zygmund [ ], p. 8 Vol II) (2)

k=—n
What Dash et.al. (Loc.cit) considered was to study the random trigonometric
polynomial
n
Z XkC;in)e%ikx (3)

k=—n
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where (X})22 _ are random variables defined as

1
Xk: — / e—QWZkth(t)
0

Where X (t) is a stable process with index a € (1,2). They were able to show
that (3) converges in the mean to a stochastical integral.

What we try in this work is to see if a similar result holds for a semistable
process.

Let X () be a stochastic process with independent increment X (t2) — X (¢1)
having the characteristics function e~lf1—t2l(cteosloglullul® for ¢ e L[q, b]

where 1 < a < 2 we can show that it is possible to define the stochastic
b

integral / f(t)dX (t) which has the characteristics function

a

o1l (e 2 17012 dtet [ cos(log | (1) +log [ul) | ()]t
The polynomial corresponding to the periodic function f(z) at the points.

(n) _ () , 27 -
T, = ot 1 (j=0,1,2,3,....2n) (4)
is called the nth interpolating polynomial of f.

The interpolating trigonometric polynomial coincides with the function f

at these points is given by

2n
2
o)) = gy YA Doke =) 6
Where D,, is the Direchlet Kernel given by
1 - sin (n + l) T
Dn = — — 72
(x) 5 + Z cos kx DsinZ (6)
k=1
We can re-arrange the item in (2) and write
+n _
In(z, f) = Z Clin)e%m (cf Zygmund [4] p-8 vol.II) (7)

k=—n
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The coefficients C,gn) can be expressed as Fourier Stieltjes integrals.
Now we can write

Lno(z, f) = Y Ofe?mike (8)

k=—v
To get to our result we need two definitions, one Lemma (Chow and Teicher

[1] p-285) and result (cf Zygmund [4] vol. 11, p-30).
Definition 1.1

A sequence of random variable X, is said to converge in the mean to the
random variable X if nh—>120 E\X, - X|=0.
Definition 1.2

A sequence of random variable X, is said to converge probability to a
random variable X if li_)m P{|X, — X| > €} =0 for every € > 0.
Lemma 1.3 o

For any random variable X with the characteristics function ¥, the absolute

moment of the random variable X is given by

2 [ 1- w(t
E|X| = / Mdt
T ) oo t2
Again it is known (cf Zygmund [4] vol. 11 p-30) that for f € LP[0,2x]p > 1,
27
lim | Ino(t —u) — f(t —u)|Pdt =0

n—oo 0

2. OUrR MAIN RESULTS

Theorem 2.1

+n
The random trigonometric polynomial Z X kCgL)e%ikx

k=—n
1

where X, = / e 2™k 41X (t) and X (t) is a stochastic process with indepen-
0
dent increment having the semi-stable distribution of index o where 1 < a < 2

with the characteristics function e~lt1—t2l(ctcoslog ul)[ul*

1
to the stochastic integral / f(t —u)dX(u) for f e LY0,1].
0

converges in the mean
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Proof of Theorem 2.1
Z XkC]E: 2mikt _ Z C / 727rikudX(u)627rikt
k=—v k=—v

/ ch) 27rzktudX()

0

k=—v

- /0 Lo (t = w)dX (u)

Now
1 1 a
E / Tt — u)dX (w) —/ F(t - w)dX (w)
0 0
9 Hoo [ _ p—(cteosloglul)ul® [y [In,u(t—u)—f(t—u)|“dt
:/ 3 du
T ) _o U
_4 b (1= e ereostoglublul® fol [ Ino(t —u) — f(t —u)|“dt d
_77/0 u? “
4 [ [1-— —(c+coslog |ul)|u|® 1 I, o(t — — f(t — ot
= ( e Jiluslt =) = ft=wldt)
T 1 U

(1 —e* < for every z > 0)

4 1 1
< 77/0 (c+ 1)|u|a_2du/0 | Ino(t —u) — f(t —u)|*dt

4 [ (1 — e—(ctcosloglul)ul® [ |Tny(t—u)—f(t—u)|*dt
+ / 5 du
1

™ u

1
(et /|1m — ) — f(t — u)|*du

We know (cf Zygmund [4] vol. 11, p-30) that for f € LP[0,2n],p > 1,
1

lim/ | Ino(t —u) — f(t —u)Pdt =0.

n—oo
Hence the result follows. We can, with much less mechanism, prove

Theorem 2.2
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Let f be any continuous function with modulus of continuity 0 (log%)'

Let the nth interpolating polynomial of f be given by

+n
Lz, f) = Y e

k=—n
Then the random interpolating polynomial

Lo(X)= 3 O Ayelribe

k=—v

1
with Ay — / e~ 2mik X (1)
0

where X (t) is stochastic process with independent increment X (t2) — X (¢1) of

index a € (1, 2] having the characteristics function e~ J (eeos log([ullf (1)) £ (1)| dtu]

1
converges in probability to the stochastic integral / ft —u)dX (u).
0
Proof of Theorem 2.2
We know (cf Mishra and Samal [3]) that

P{lf bf(t)dX(t)\ N L

fn,u = Z C]E:n)Akezwz'kt

Now

v 1
_ Z Clgn)/ 672m'lcudX(u)e2mkt
k=—v 0
1 v )
— / Z C]g”)e%rzk(tfu)dX(u)
1

0 k——»u

— / I (t — u)dX (u)

0
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p{ /ft—udX() }
:P{/o Lt — /ft—udX()

[ 1<In,v<t—u> =t wax ()| >

Weknow (cf Zygmund [4] vol. 11 p-30)that for f € LP[0,2x|p > 1,
27
lim | L (t —u) — f(t —u)|Pdu=0

n—o0 0

]

b & [t~ 1w

€

Hence the result follows.
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