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1. Introduction

In mathematical program, a pair of primal and dual programs is called
symmetric if the dual of the dual is the primal problem. The duality in linear
programming is symmetric. It is not so in nonlinear programming in gen-
eral. The first symmetric dual formulation for quadratic programming was
proposed by Dorn [4]. Dantzig et al. [3] and Mond [16] studied symmetric du-
ality in nonlinear programming by assuming the scalar function f(x,y) to be

convex in x and concave in y. The symmetric duality result was generalized by
7
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Bazaraa and Goode [1] to arbitrary cones. Subsequently, Mond and Weir [17]
presented a distinct pair of symmetric dual nonlinear programs which admits
the relaxation of the convexity/concavity assumption to pseudo convexity/
pseudo concavity.

Mond [16] initiated second order symmetric duality of Wolfe type in nonlin-
ear programming and proved the duality theorems under second order convex-
ity. Mangasarian [14] discussed second order duality in nonlinear programming
under inclusion condition. Mond [16, pp.93] and Mangasarian [14, pp.609] also
indicated possible computational advantages of the second order dual over the
first order dual. This motivated several authors [2, 5, 6, 12, 16, 21, 22| in this
field. Yang et al. [22] studied second order multiobjective symmetric dual pro-
grams and established the duality relations under F-convexity assumptions.
Mishra [15] formulated a pair of multiobjective second order symmetric dual
nonlinear programs over arbitrary cones and established weak, strong, con-
verse and self duality theorems under second order (strict) pseudo-invexity.
Also Yang et al. [21] formulated a pair of Wolfe type second order nondiffer-
entiable symmetric dual programs containing support function and presented
the duality results under F' convexity.

Recently, Gulati et al. [7] studied Wolfe and Mond-Weir type second order
symmetric duality over arbitrary cones and proved the duality results under
generalized bonvexity assumption. Gulati and Geeta [9] studied Mond-Weir
type second order symmetric duality in multiobjective programming over cones
and established duality results under pseudoinvexity /K-F convexity assump-
tion. Gulati and Verma [8] formulated a pair of Wolfe type nondifferentiable
multiobjective symmetric duality and established the duality results under in-
vexity assumption. Gupta and Kailey [10] formulated a pair of Wolfe type sec-
ond order nondifferentiable multiobjective symmetric dual programs in which

objective function contains support function and proved the duality results
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under second order F-convexity assumption. Gupta and Kailey [11] presented
second order multiobjective symmetric duality involving cone-bonvex func-
tions. Saini and Gulati [19] presented a pair of Wolfe type nondifferentiable
second order symmetric dual program over arbitrary cones under second order
K-F-convexity assumption.

In this paper, motivated by Saini and Gulati [19], a new class of second or-
der (K, F)—(p, #)- univex function pseudo convex/ second order (K, F')—(p, 0)
strongly pseudo convex function is introduced with example. A pair of Wolfe
type second order nondifferentiable multiobjective symmetric dual programs
over arbitrary cone containing square root term of positive semidefinite qua-
dratic form is formulated. The duality results are established under second

order (K, F') — (p,0)- pseudo convex function.

2. Notation and Preliminaries

The following convention for vectors in will be used; Let R™ be n-dimensional
Euclidean space and R} be the nonnegative orthant. For vectors z and y in
R" ,wedenote z <y x; <y fori=1,2,.ny2 < y&x < g for
1=1,2,..,n.

Definition 2.1: A set A function C of R" is called a cone, if for each zeC
and AeR,\ > 0,we have Moreover, if AxzeC' is convex, then it is the convex
cone.

Definition 2.2 The positive polar cone C* of C' is defined as
C* = {zeR"zT 2 > 0,YzeC'}

Let C; € R*,Cy C R™ and K C RF be closed convex cones with nonempty
interiors. Let C7,C5 and K* be the positive polar cones of C1,Cy and K
respectively.

Throughout this paper let X C R"™ and Y C R™ are open and X xY C
R*"x R™ Let C1 x Co C X xY.
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A general multiobjective nonlinear programming problem can be expressed
in the following form:
Primal (P)

Minimize f(z) = (f1(2), fa(2), .., fe(z))
Subject to — g(x) €Q, xeX, where

f:R"— RF g:R"— R™, and Q is a closed convex cone with nonempty
interior in R™.

Let Xo = {zeX : —g(x)e@Q} be the set of all feasible solutions of (P).
Further let K denote the set K\{0}.All the vectors will be considered as
column vectors.

Definition 2.3 A point zeX( is weakly efficient solution of (P), if there
exist no xeXyp such that f(z) — f(z)e intK.

Definition 2.4 A point zeX) is efficient solution of (P), if there exist no
zeXg such that f(z) — f(z)e Ko.

Definition 2.5 A functional F' : X x X x R" is sublinear in its third
argument if for all (z,u)eX x X,

(i) F(x,u;a1 + a2 < F(z,u;a1) + F(x,u;a2),Var, aze R" and

(ii) F(z,u;aa) = aF(x,u;a),VaeR, and aeR.

For notational convenience, we can write F(,,,)(a)for F(z,u;a).

Now, we are in position to give definition of second order K — (F,«, p,6)
-pseudo convex function and second order strongly K — (F,a,p,0) pseudo
convex function.

Definition 2.6 A twice differentiable function f = (f1, fo, ..., fx) : X XY —
R* is said to be second order (K, F) — (p,0) -pseudo convex function in the
first variable at ueX for fixed veY, if there exists 01 : X x X — R, p;,i =
1,2,....,k and a sublinear functional F' : X x X x R"™ — R such that for all
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(x,u;p)eX x X x R™ we have,

Fm,u(vufl(uv U) + vuufl (Uv 'U)pl) + ple%(x7 u)7
e eK
Fm,u(vufk(ua U) + vuufk(ua U)pk) + pke% ((L‘, ’LL)

fi(z,v) = fi(u,v) + 2pT Vo fi(u, v)pr,
= e eK

Sr(z,0) = frlw, v) + 58 Ve fr(u, v)pi
Definition 2.7 A twice differentiable function f = (fi, fo, ..., fx) : X XY —
RF is said to be second order (K, F) — (p, #) -strongly pseudo convex function
at ueX for fixed veY, if there exists 61 : X x X — R,p;,i = 1,2,...,k and a
sublinear functional F': X x X x R™ — R such that for all (z,u;p)eX x X x R"

we have,

Fx,u(vufl (u, U) + Vuu fi (uv U)pl) + ,019%(33‘, u)?
e eK
Fx,u(vufk(uv U) + vuufk:(ua U)pk) + pke% (.1‘, u)

fi(z,v) = fi(u,v) + 2pT Vo fi(u, v)pr,
= ceey eKy

fi(@,v) = fr(u,v) + 5 Vi fr(u, v)pr
Definition 2.8 A twice differentiable function f = (f1, fo, ..., fx) : X XY —
RF is said to be second order (K,G) — (o,0) -pseudo convex function in the
second variable at yeY for fixed zeX, if there exists 5 : X x X — R,0;,1 =
1,2,....,k and a sublinear functional G : Y x Y x R™ — R such that for all
(v,u;q)eY X Y x R™ we have,

Gv,y(vyfl (1'7 y) + vyyfl (‘7:7 y)Ql) + 019%(117 y)u
Fopae (Vo fro(u,v) + Vi i (u, v)pr) + 003 (2, u)

filz,v) — filz,y) + 2al Vi fi(z,y)a,
= vy eK

fr(@v) = fu(@, ) + 3ai Vyy fr(z, y)ar
Definition 2.9 A twice differentiable function f = (f1, fa,..., fx) : X XY —

eK

RF is said to be second order(K,G) — (o, ) -strongly pseudo convex function
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at ueX for fixed veY ,if there exists #; : X x X — R,0;,i = 1,2,....k and a
sublinear functional G : Y xY x R™ — R such that for all (v,y;q)eY xY x R™

we have,

Gvay(vyfl(x7 y) + Vyyfl(xy y)ql}) + 0-10%(1)7 y)7
eK

Gy (Vyfe(z,y) + Vi fr(@, y)ae) + o103 (v, y)

fi(z,v) = fi(z,y) + 561 Vyy fr(z,y) a1,
= ceey eKy

filw,v) = fula,y) + 54 Vyy ful@, y)an
Lemma 2.1 Let B be a positive semi definite matriz of order n. Then for
all z,weR"™, T Bw < (a:TB:c)%(wTBw)%. The equality holds if Bx = ABw for
some A > 0.

3. Second order multiobjective duality

We consider the following pair of second order Wolfe type nondifferentiable
multiobjective programming problem with k-objective:
Primal(SWP) L(z,y, \,w,p) =

fi(z,y) + (T Bia)z — L8 AT (Vg il y)pi)
—y [ NV filzy) + S0 NV fi(z, y)pil,

Minimize .
1
Je(z, ) 4}; (27 Byz)? — %Zlek&‘p?(vyyfi(% Y)pi)
_yT[Zizl AiVyfilz,y) + 2 MV fi@, y)pil
Subject to

k
=Y NilVyfilw,y) — Diwi + Vyy fi(x, y)pileCs, (3.1)

i=1
wl Dyw; < 1,i=1,2,...,k, (3.2)
zeCq, wieR™, (3.3)

k

Neint K*,) Ai=1 (3.4)

i=1
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Dual(SWD) M (u,v, ), z,q) =

1

fl (u7 U) - (UTDlU) 2= % Zf:l )‘zqu(vuufz(ua U)Qi)
—uT [ NV fi(u,v) + S8 NV fi(u, 0)gi),

Mazximize e
1
Fr(u,v) + (W Do)z — 2578 NgT (Vo filu, v) ;)
—uT 25 AiVafi(u,0) + 30 AV filu, v)gi]
Subject to
k
Z )\z[vufz(ua U) + Bz + Vuufl(ua U)Qi]ecfa (3-5)
i=1
2IBizi < 1,i=1,2,.., k, (3.6)
UGCQ, zieRn, (37)
k
Aeint K*,) A\i=1 (3.8)
i=1
where

(1) f = (f1, fa, e ) : R" x R™ — RF is thrice differentiable vector function,
(ii) C; and Cy are closed convex cones in R™ and R™ with nonempty interi-
ors,respectively,

(iii) C} and Cj are positive polar cones of C and Cj respectively,

(iv) K is a closed convex cone in R* with intK # ¢ and R% C K,

(V) qi,zi,i = 1,2, ..., k are vectors in R™ and p;, w;,i = 1,2, ..., k are vectors in
R™.

(vi) B = (B1,Bs,...,Bx) andD = (D1, Do, ...,Dy), B; and D; are positive
semidefinite matrices of order n and m respectively. Now we established the

following theorem



14 Arun Kumar Tripathy

Theorem 3.1 (Weak Duality)Let (z,y, A, w,p) be feasible solution for
the primal (SWP) and (u,v, A, z,q) be feasible solution for the dual (SWD).
Suppose there exist 61 : X X X — R,05: Y XY — R p;eR,0;¢R, i =1,2,....k
and sublinear functional F': X x X x R — Rand G : Y XY x R™ satisfying
(1)Fyu(a) + Z?:l \ipif3 (z,u) —ula > 0,V(z,u)eCy x Co,acC?,

(2)Goy (D) + S8 Nioib3(v,y) — yTb > 0,V(z, u)eCy x Cy, aeC?,

Furthermore assume that for each

(3) f(-,v) + (.)T Bz is second order (K, F) — (p,#)-pseudo convex in the first
variable at v for fixed v and

(4) f(x,.) + ()T Dw is second order (K, F) — (p,0) -pseudo concave in the
second variable at y for fixed x .

Then Inf(SWP) — Sup(SWD)eK

. Proof: Since (u,v, \, 2, q) is feasible solution for (SWD), from dual constraint
(3.5) we have a = Zf 1 Ai[Vaufi(u,v) + Bizi + Vi fi(u, v)g;]eCy.

Since ueC7, we have
T
uwla=u Z)\ Vufi(u,v) + Bizi + Vo fi(u,v)q] > 0. (3.9)
So, hypothesis (1) in lieu of (3.9), implies that

k
Frula) + > Nipiti (z,u) > 0.
=1
i.e.
k k

Fru() NilVufi(u,v) + Bizi + Vaufi(u, v)@i]) + > Xipi67 (2, u) > 0. (3.10)
i=1 =1

The sublinearity of F' with respect to third argument and (3.10) gives

k

> XilFeu(Vafi(u,v) + Bizi + Vaufi(u, v)@:) + pii(z,u)] = 0. (3.11)
=1
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Since Ae intK*, the above inequality can be written as

F.t,u(vufl (’U,, 1)) + Biz + vuufl (u, U)pl) + Pl‘g%(xy u),

K. (3.12)
Fru(Vufi(u,v) + Brzy, + Vau fr(u, 0)pr) + prb7 (z, )

So, second order (K, F') — (p, §)-pseudo convexity of fi(.,v) + (.)T B;z; at u for

fixed v implies that

fi(z,v) + 2T Biz1 — fi(u,v) — u!' Biz1 + 3¢f Vi fi(u,v)q,
e eK.
fr(z,v) + 2" Brzi — fi(u,v) — v’ Brz + 58 Vaufi(u, v)gr

For Ae intK*,

1
fqiTVuufi(u,v)qi] >0. (3.13)

k
Z Ailfi(z,v) + 2" Bizi — fi(u,v) —u" Bz + 5
i=1

Similarly (u, v, \,w,q) is feasible solution for (SWD), so from primal con-

straint (3.1), we have

k
b= — Z XilVy fi(x,y) — Diw; + Vyy fi(x, y)pi]eCs.
i1

So yeCy implies that

= —y7 Z XilVy fix,y) — Diw; + Vyy fi(x, y)pi] > 0. (3.14)

Again hypothesis (2) in lieu (3.14), implies that

k
b)+ Y 0ib(v,y) >0
i=1

i.e.

k k
Goy(—= D MilVyfile,y) — Diwi + Vo fi(z, y)pi]) + Y 0ib3(v,y) > 0
=1

i=1

k

D _NilGuy(<[Vyfilw,y) = Diwi + Vyy filw,y)pi]) + 0i03(v,9)] 2 0. (3.15)
i=1
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Since A € intK*, inequality (3.15) can be written as

( Gv,y(_[vyfl(xa y) - Dlwl + Vyyfl(xa y)pl]) + 0—19%(”7 y)7 )
€ K. (3.16)
Gy (—[Vyfe(z,y) — Dywi + Vyy fi(z,y)pk]) + 0103 (v, y)

From hypothesis (4) and (3.16), we obtained

—[fi(z,v) = (0)" Dywi — fi(z,y) + (y)" Diw + 3p1 Vyy f1(z,y)p1], .
€ K.

—[fr(z,v) = ()" D2k — fi(@,y) + (y)" Dywy, + 50f Vyy fir (2, y)p4]
This implies that for A € intK*

Z Xil—fi(z,v) + (0) Daw; + fi(z,y) — ()" Diw; — $p] Vyy fi(z, y)pi] > 0.
(3.17)
Adding (3.13) and (3.17), we get

Z/\ [filz,y) + ()" Bizi — ()" Dyw; — 1pIV gy fila, y)pi)]

— Z il fi(u,v) — (’U)TDiwi +ul' Bz — %q;“rvuufi(u, v)g) > 0. (3.18)

Now from Schwarz inequality, (3.3) and (3.7), we have,
1 1 1
T Bz < (27 Biz)2 (2] Biz)2 < (2T Biz)2,i=1,2,.... k. (3.19)
1 1 1
v! Dyw; < (vI D)2 (w! Daw;)2 < (v Djw)2,i = 1,2, ..., k. (3.20)

Also from primal constraint (3.1), we have

- Z XilVyfi(x,y) — Diw; + Vyy fi(z, y)pi] € C5.
Form (3.14), we have
ZA Vil y) = Diwi + Vyy i, u)pid) <0
k

k
= =Y Al Dawi) < =" O NIV file,y) + Vg filz,y)pd). (3.21)
i=1

=1
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Similarly from dual constraint (3.5), we get

k k

Z Ni[ul Biz) > —uT(Z iV fi(u, v) + Vi fi(u, v)gil). (3.22)

i=1 i=1

Using (3.19), (3.20),(3.21) and (3.22) in (3.18), we obtain that

l\D\»—A

K
> A{[fiz w)+ (" Biw) 2 —yT [V iz, v)+ Vg fi(2, y)pil — 3] (Vyy iz, y)pil}
=1

- Z Ai{fi(uvu)_(UTDiU)%_uT[vufi(uvv)+vuufi(uvU)Qi]_%qg[vuufi(“vv)qi]} = 0.

= Inf(SWP) — Sup(SWD) € K.

In order to prove the strong duality theorem, we obtain the following Lemma
established by Suneja et al. [19]. It gives Fritz-John type necessary optimality
conditions for a weakly efficient solution of (P).

Lemma 3.1 If z is a weakly efficient solution of (P), then there exist i €
K*,3 € Q*, not both zero, such that (x — z)T[aV f(z) + BVg(z)] > 0,Vz €
Cand B7g(z) = 0.

Theorem 3.2(Strong duality) Let (Z, 9, \, @, p) be weakly efficient solution
of (SWP) such that

(i) V(K \ifi(%,7)) is nonsingular,
(ii) pi # 0 implies Y0 XV (Vyy fi(Z, 9)Pi)pi # 0,
(ili) the vectors Vy fi(Z,%), ...., Vy fx(Z,y) are linearly independent,
(iv) the vector 323 ; AV, (V yyfi(f, Y)pi)pi & span{Vy fi(Z,7), ..., Vy fie(Z,7) }\{0}.

Then there exist Z; € R™ such that (Z,7,\, 2, = 0) is feasible for (SWD)
and two objective values of (SWP) and (SWD) are equal. Furthermore, if the
hypotheses of Theorem 3.1 are satisfied for all feasible solution of (SWP) and
(SWD), then (Z,, A, Z,¢ = 0) is an efficient solution of (SWD).
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Proof: Since (Z,7, \,w, p) is weakly efficient solution of (SWP), by Lemma
3.1, there exist i € K*,3 € Cy,7 € R,,6; € Ry,z € R" such that

SF Ve fi(z,9) + Bz
(@=2)" | + 0 NV fi(@,9)7 (B — 550, fis) >0,z € C1,
S AV (Vyy fi(@, 3)5) T (B — (0 1) (5 + 551)]

ML IV
_ T +Zz 1AV yyfl(f ) (B =1 i fa)
v-1) (Zz 1”2)Zk Ai(Vyy fi(Z, 9))pi =0
+(2Iy AV (Vi £i(2,9))50) (B = (i 1) (7 + 5p0)]

(3.23)

(3.24)
for all y € R™.
k
A=) (Vyfi( NTB-9> & ‘)+5ek>
=1
(B~ (S )" + 39) Vo 1 (Z. )i >T . .
+{(GoE s ) Vah@wome ) S0 )
for all A € intK* and e, = (1,1,...,1) € R
k
Z M(Vyy i@, 9)(B = (Y ) (@ +p:) =0, (3.26)
=1

BT Z Ni(Vy fi(Z,§) — Diw; + Vo fi(%,9)pi) = 0, (3.27)
2T Bz = (xTB,»x)%,z‘ =1,2, ...k, (3.28)

k
3O Ai—-1)-0, (3.29)

=1
(=D +D;w;) = 0,i = 1,2, ..., k; (3.30)
(w0l Dyv; —1) = 0,i=1,2, ..., k; (3.31)
2Bz <1, (3.32)
(o, B,7,0) >0 (3.33)
(o, 8,7,0) # 0, (3.34)
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Since Vyy(Zle Aifi(Z, 7)) is nonsingular, (3.26) gives

= (Q_ 1)@ +pi). (3.35)

From (3.24) and (3.25), we obtained

[ = Xy i)V fi(@,0) + iy M(Va i@, )T (B — 5 320y i)
—(F 1) S NV i@, 5)pi
+ E?:l )‘i( ( yny(x y)pz)) [B - (E?:l ﬁi)(y + %131)] (3 36)

and i
(Vyfi(l’, DNTB-gY_ )+ 5€k>
i=1
_ ~ _ L T
(B - (Zf:l :U’i)(yT + %pi))Tvyyfl(xvy) Ty 0y _
+ 2 ko~ T 1- T N =0. (3.37)
(B = (Cim B (Y™ + 5P%))" Vg fu(Z, §)Dk
We claim that i # 0.

To do so, suppose i = 0. So Zle i = 0.
Then (3.35) gives 3 = 0,which along with (3.37) yields dey = 0 or § = 0.
From (3.30) and (3.31), we have

5 = (@] Dyw;) = @;(YD;w;) = w;(D;B) = 0.
Thus (f, 8,7,6) = 0, this contradicts (3.34).
Hence
fi 0. (3.38)
Since i1 € K* and Rﬁ C K implies K* C Ri, so we get

k
ii>0o0r Y fi;>0. (3.39)
i=1
d (3.36), we get

35) an
([ —§<z )|\ yfz-<x,y>+z?1Ai<vyyfi<x,y>>T<z?m-)pi)
k’L 1

From (3

( ﬁz) Zk ( yyfz(f g)ﬁz =0,
A

+ 2 im Ai(Vy(V yyfz(x y)pz)) [(Zz 1”1)(% )]
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k
[Z ANi(Vy(Vyy fi(Z,9))pilpi = — Z [V, fi(z,9)]. (3.40)
i=1 Zz 1Mz

Now suppose p; = 0,7 = 1,2, ...k. Then hypothesis ( ) implies that
Zle iV (Vyy fi(Z, 9)Pi)Pi # 0, which in view of (3.40) contradicts hypothesis
(iv).
Therefore

Bi=0,i=1,2, ..k (3.41)
Since the vectors Vy fi(Z,9),...., Vy fx(Z,7) are linearly independent, (3.40)
and (3.41) yield

k
p=x0 ). (3.42)
i=1
From (3.35) and (3.42), we obtain
k
— (> (3.43)
i=1
or
_ p
j=—" e (3.44)
Chim)

Again using (3.39) , (3.41) (3.42) and (3.43) in (3.23), we get

ZA Vo fi(Z,§) + Biz]) > 0,Vz € C). (3.45)
Let € Cy. Then x 4+ 7 € C’land so (3.45) implies that

r zk: Ai[Vafi + Bizi) > 0,Vx € Cy

l.e.

k
> XilVafi + Bizi] € Cf. (3.46)
i=1
Thus from (3.32),(3.44) and (3.46), we obtain that (z,y, A, Z,¢ = 0) satisfies

the dual constraints (3.5), (3.6), (3.7) and (3.8).
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Thus (z, 9, \, 2, = 0) is feasible for (SWD).
Now letting = 0 and x = 27 in (3.45), we get

k
(S NIVL£i(7,§) + BiA]) = 0,
=1

or using (3.28), we get

1
Z NilVefi(z, 7)) = =27 Bizi = —(z7 B;j#)2. (3.47)
Again (3.27) along with (3.39) (3.41) and (??) gives
Z N[V fi(Z,9) = 57 Dyw;. (3.48)
From (3.30) and (3.43,) we get
_ g _
(i )
or
D;y = aD;w;, wherea = k’Y — > 0. (3.50)
> i1 i)

Under this condition of the Schwarz inequality holds as equality. Therefore
_ _ _T _ l _T _ l
yDyw; = (v Diy)2 (w; Dyw;)2. (3.51)
In case v > 0, from (3.31), we get w] D;w = 1.
1
So (3.50) implies yD;w; = (y* D;y)2.
In case ¥ = 0, from (3.49), we get D;5j = 0 and so yD;w; = 0 = (y7 D;)?2.

l\J\»—A

Thus in either case

T T s

y' Diw; = (y° Diy)2. (3.52)
So, from (3.48) and (3.52), we find

D=

k
7" (Y NIV fi(3,9) = (57 Diy)2. (3.53)

=1
So using (3.41), (3.47) and (3.53), we conclude that the two objective values

are equal,
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i.e. for every i € {1,2,...,k}

k k
[ )+ @7 Bia) 2=y 1S AV i, y)] = i, 0)— (07 D)2 —uT 1> AV i (u,v)]
i=1 1=1
l.e.

L(z,y,\,w,p = 0) = M(Z,9,\, z,q = 0). (3.54)
Now we claim that (Z,9, A, Z, ¢ = 0) is efficient solution of (SWD). If this would

not be case, the there would exist a feasible solution (@, @, A, Z,§ = 0)such that

M(Z,§,\2,§=0) < M(4,0,\,2,§=0) = L(Z,§,\, %,q

0) < M(a,v,\ 2,q=0).
This is a contradiction to weak duality Theorem 3.1.
Hence (Z, 9, \, Z,q = 0)is efficient solution of dual (SWD)
Theorem 3.3 (Converse duality theorem) ) Let (Z,9, A\, w,p) be weakly
efficient solution of (SWP) such that
(i) Vuu(Zle Aifi(@,v)) is nonsingular,

(i) @ # 0 implies Y5 4 AV (Vi 9))G)d # 0,

(iii) the vectors V, fi1(u,0), ..., Vi fr(u, v) are linearly independent.

(iv) the vector S-F | XV (Vau fi(@,9))3) T ¢ span{Vfi(@, D), ..., Vufr(@, ) }\{0}.
Then there exist w; € R™ such that (@, 9, \,w,p = 0) is feasible for (SWD)
and two objective values of (SWP) and (SWD) are equal. Furthermore, if the
hypotheses of Theorem 3.1 are satisfied for all feasible solution of (SWP) and
(SWD), then (@, o, \,w,p = 0) is an efficient solution of (SWD).

Proof: The proof follows on lines of Theorem 3.2.

4. SPECIAL CASES

(i) If B; = D; = 0,k = 1; then the problem (SWP) and (SWD) can be
reduced to the problem proposed by Gulati et al. [7] as follows:
Primal (WP):

Minimize f(x,y) — " [Vyf(x,y) + Vyy f (@, y)p] = 307 [Vyy f(x, y)p]



Multiobjective Fractional Programming and Pareto Optimality... 23
SUbjeCt to _[vyfl(xa y) + vyyfi (I’, y)pl] S Céka
x € (C,

Dual (WD):
Maximize f(u, u) +u [Vof(u,v) + Vou f(u,0)q] = 30" [Vauf (u,v)q]
Subject to V, f(u,v) + V. f(u,v)q € CF,

v € Oy,

(i) If k=1, C, = R?,Cy = R™(«TBa)? = s(|C") and (yTDy)? —
s(y|D"), where C' = {Bz|xT Bz < 1},D’ = {Dy|y" Dy < 1}, then the
problem (SWP) and (SWD) can be reduced to the problem proposed
by Yang et al. [21]

Primal (WP):
Minimize f(z,y)+s(x[C") =y [Vy f (2, )+ Vyy f (2, y)p]— 50" [Vyy f (2, 9)p]
Subject to Vy f(x,y) — 2+ Vyy f(z,y)p <0,

r>0,2€D.
Dual (WD):
Maximize f(u,u)—s(v|D")—uT [V f(u, )+ Vi f(u,v)q =347 [Vuuf (u, v)q]
Subject to V f(u,v) + Vyu f(u,v)g > 0,

v>0,weC.

5. NUMERICAL EXAMPLE

Let k=2, m=n-1,
K ={(x,y) : 2 >0,y >0}, intK* = {(z,y) : x > 0,y > 0},
Ci=Ry,Co=R.C; = Ry and Cf = R,
Let f = (fi,f2) : R x R — R? be defined as f(z,y) = (fi(z,y), f2(2,y)),
where fi(z,y) =2’ =2 —y* +y, folw,y) ="
Let p1,p2 € R, 21, 20, w1, wa € [0,1], By = By = D1 = Dy = 1.

—e Y.
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Then our problems primal and dual problem reduces to

Primal: SVVP2 ) ) ) "
_ _ -y _ 2
Minimize < 2=y MYy 2up ) e Y~y 5ph), )
e —e Ytz + M2y —y+2yp1 +p7) + doe Y(yp2 — y + 503)

Subject to

My +wr+2p1 — 1)+ Xa(e Ypa +wy —e™Y) € CF, (5.1)

w? < 1,w3 <1, (5.2)

x € C,wy,we € [0,1],p1,p2 € R, (5.3)

A€ intK* A 4+ do = 1. (5.4)

f&ual.: S.WD u? —u—v? = M\ (2u% — u+ 2ugqr — ¢F) + Aoe " (uga + 43 — ),
AXIZE \ “emu _e=v — 4 — A\ (202 — u + 2uqy — ¢2) + Ase "(ugz + ¢3 — u) )

Subject to

MQRu+2z14+2¢ — 1)+ Xa(—e "+ 20+ e “q2) € CF, (5.5)

22 <1,25 <1, (5.6)

v € Cy 21,22 €10,1],q1,92 € R, (5.7)

A€ intK* A\ + Ao = 1. (5.8)

Let there exist #; : R x R — R and 03 : R x R — R defined as 6;(x,u) =
Va? +u?, Oy(z,u) = /o2 +y? and p1 = 3,p3 = 2,00 = —2,00 =1

Let F: Rx RxR— Rand G: Rx R Xx R — R are the functional defined
as Fyu(a) = F(z,u;a) = a(x? +u?) and Gy 4(b) = G(v,y;b) = b(v? + y?) and
satisfying

(1) Fpu(a) + Zle N\ipif3(z,u) —uTa > 0,¥(z,u) € C; x C1,a € Cf, and

(2) Gv,y(b)-i-zle ioi03(v,y)—y b > 0,Y(v,y) € Oy xCa, b € C} respectively.
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Clearly F' and G are sublinear in their third argument.

Now, a1 = Vyufi(u,v) + 21 + Vo fi1(u, v)q1 = 2u + 2¢1 + 21 — 1,
az = Vufo(u,v) + Vi fo(u,v)g2 = =™ + e g2 + 22.
b1 = Vyfi(z,y) + wi + Vi, fi(z,y)ps = =2y + 1 + wy — 2py,
by = Vyfa(z,y) + w2 + Vyy fo(z,y)p2 = e — e ¥pa + wo,
From (5.5) and hypothesis (1), we find
(F(z,usa1) + p16%(z,u), F (@, u; a2) + p26? (2, ) € K

= ((Qu+2p1 +21 — 14+ 3)(@® +u?), (e “ + e Upy + 20 — 2)(2® +u?)) € K
s2u+2p+2z21—14+3>0and —e “4+e “py+20—22>0
= p > —1—u—%z1 and py > 1+ 2e% — z9e"
Now, fi(z,v) +z21 — fi(u,v) — uz1 + 3pT Vuu fi(u, v)p1
=2t~z —u? tutz(r—u)+ (pr)?
>a? —x—uw +u+tz(z—u)+ (1+u+32)?
:xQ—x—l—zlx—{—l—FSu—l—%z%—l—zl >0,Vz,u € Ry
and fo(x,v 4+ z22 — fa(u, v) — uzz + 303 Vaufo(u,v)p2)

xT

=e " —e "+ 2z —u) + spse "

>e " —e 4 L1+ 2" — e¥20)le " + 2o(z — u)
=e " —teT + e (d+ 525 —229) +2 — 22+ 20(x — u) > 0,
Vz,u € Ry and z1, 29 € [0,1].

So,

(f1(z,0)=f1(u,v)+ 3] Vaufi(u,0)p1, fo(z,v)— fo(u, v)+3p3 Vi fo(u, v)p2)) € K.
Hence f = (f1, f2) : R — R? is second order (K, F) — (p, ) -pseudo convex at

u € Ry for all z € R and fixed v.

Similarly, f = (f1, f2) : R — R?is second order (K, F)—(p, ) -pseudo concave

at y for fixed x.
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So, all the conditions of Theorem 3.1 are satisfied.

Again, from primal constraint (5.1) to (5.4), we observed that,

(x =1,y =0, = %,)\2 = %,wl = %,wg = %,pl = %,pg = 2)is a feasible
solution of (SWP)

and the value of the objective functions at this point is (4, 1.49)

Also, from dual constraint (5.5) to (6.8), we see that

(u:LU:O,)\l:l)Q:

5 L2y = %,ql = %,qg = 2) is a feasible

21 = 73,

1
2
solution of (SWD) and the value of the objective functions at this point is
(0.0446, —0.587).

From the above discussion, we observe that Inf(SWP) — Sup(SWD) € K.

Hence the duality results holds good.

6. CONCLUSION

In this paper, a new class of second order (K, F) — (p, #) pseudo convex/
second order (K, F') — (p, 0) strongly pseudo convex function is introduced
with example. A pair of Wolfe type second order nondifferentiable symmetric
dual programs over arbitrary cone containing square root term of positive
semidefinite quadratic form is formulated. The duality results are established
under second order (K, F') — (p, )-pseudo convexity assumption. A numerical
example is given to substantiate the analysis. The results developed in this

paper cane be further extended to fractional programming.
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