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1. Introduction

In mathematical program, a pair of primal and dual programs is called

symmetric if the dual of the dual is the primal problem. The duality in linear

programming is symmetric. It is not so in nonlinear programming in gen-

eral. The first symmetric dual formulation for quadratic programming was

proposed by Dorn [4]. Dantzig et al. [3] and Mond [16] studied symmetric du-

ality in nonlinear programming by assuming the scalar function f(x, y) to be

convex in x and concave in y. The symmetric duality result was generalized by
7
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Bazaraa and Goode [1] to arbitrary cones. Subsequently, Mond and Weir [17]

presented a distinct pair of symmetric dual nonlinear programs which admits

the relaxation of the convexity/concavity assumption to pseudo convexity/

pseudo concavity.

Mond [16] initiated second order symmetric duality of Wolfe type in nonlin-

ear programming and proved the duality theorems under second order convex-

ity. Mangasarian [14] discussed second order duality in nonlinear programming

under inclusion condition. Mond [16, pp.93] and Mangasarian [14, pp.609] also

indicated possible computational advantages of the second order dual over the

first order dual. This motivated several authors [2, 5, 6, 12, 16, 21, 22] in this

field. Yang et al. [22] studied second order multiobjective symmetric dual pro-

grams and established the duality relations under F -convexity assumptions.

Mishra [15] formulated a pair of multiobjective second order symmetric dual

nonlinear programs over arbitrary cones and established weak, strong, con-

verse and self duality theorems under second order (strict) pseudo-invexity.

Also Yang et al. [21] formulated a pair of Wolfe type second order nondiffer-

entiable symmetric dual programs containing support function and presented

the duality results under F convexity.

Recently, Gulati et al. [7] studied Wolfe and Mond-Weir type second order

symmetric duality over arbitrary cones and proved the duality results under

generalized bonvexity assumption. Gulati and Geeta [9] studied Mond-Weir

type second order symmetric duality in multiobjective programming over cones

and established duality results under pseudoinvexity/K-F convexity assump-

tion. Gulati and Verma [8] formulated a pair of Wolfe type nondifferentiable

multiobjective symmetric duality and established the duality results under in-

vexity assumption. Gupta and Kailey [10] formulated a pair of Wolfe type sec-

ond order nondifferentiable multiobjective symmetric dual programs in which

objective function contains support function and proved the duality results
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under second order F-convexity assumption. Gupta and Kailey [11] presented

second order multiobjective symmetric duality involving cone-bonvex func-

tions. Saini and Gulati [19] presented a pair of Wolfe type nondifferentiable

second order symmetric dual program over arbitrary cones under second order

K-F-convexity assumption.

In this paper, motivated by Saini and Gulati [19], a new class of second or-

der (K,F )−(ρ, θ)- univex function pseudo convex/ second order (K,F )−(ρ, θ)

strongly pseudo convex function is introduced with example. A pair of Wolfe

type second order nondifferentiable multiobjective symmetric dual programs

over arbitrary cone containing square root term of positive semidefinite qua-

dratic form is formulated. The duality results are established under second

order (K,F )− (ρ, θ)- pseudo convex function.

2. Notation and Preliminaries

The following convention for vectors in will be used; LetRn be n-dimensional

Euclidean space and Rn
+ be the nonnegative orthant. For vectors x and y in

Rn , we denote x < y ⇔ xi < yi for i = 1, 2, .., n; x ≤ y ⇔ xi ≤ yi for

i = 1, 2, .., n.

Definition 2.1: A set A function C of Rn is called a cone, if for each xεC

and λεR, λ ≥ 0,we have Moreover, if λxεC is convex, then it is the convex

cone.

Definition 2.2 The positive polar cone C∗ of C is defined as

C∗ = {zεRn|xT z ≥ 0,∀xεC}

Let C1 ⊂ Rn, C2 ⊂ Rm and K ⊂ Rk be closed convex cones with nonempty

interiors. Let C∗1 , C
∗
2 and K∗ be the positive polar cones of C1, C2 and K

respectively.

Throughout this paper let X ⊆ Rn and Y ⊆ Rm are open and X × Y ⊆
Rn ×Rm. Let C1 × C2 ⊆ X × Y .
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A general multiobjective nonlinear programming problem can be expressed

in the following form:

Primal (P)

Minimize f(x) = (f1(x), f2(x), ..., fk(x))

Subject to − g(x) εQ, xεX, where

f : Rn → Rk, g : Rn → Rm, and Q is a closed convex cone with nonempty

interior in Rm.

Let X0 = {xεX : −g(x)εQ} be the set of all feasible solutions of (P).

Further let K0 denote the set K\{0}.All the vectors will be considered as

column vectors.

Definition 2.3 A point x̄εX0 is weakly efficient solution of (P), if there

exist no xεX0 such that f(x̄)− f(x)ε intK.

Definition 2.4 A point x̄εX0 is efficient solution of (P), if there exist no

xεX0 such that f(x̄)− f(x)ε K0.

Definition 2.5 A functional F : X × X × Rn is sublinear in its third

argument if for all (x, u)εX ×X,

(i) F (x, u; a1 + a2 ≤ F (x, u; a1) + F (x, u; a2),∀a1, a2εRn and

(ii) F (x, u;αa) = αF (x, u; a),∀αεR+ and aεR.

For notational convenience, we can write F(x,u)(a)for F (x, u; a).

Now, we are in position to give definition of second order K − (F, α, ρ, θ)

-pseudo convex function and second order strongly K − (F, α, ρ, θ) pseudo

convex function.

Definition 2.6 A twice differentiable function f = (f1, f2, ..., fk) : X×Y →
Rk is said to be second order (K,F ) − (ρ, θ) -pseudo convex function in the

first variable at uεX for fixed vεY , if there exists θ1 : X × X → R, ρi, i =

1, 2, ..., k and a sublinear functional F : X × X × Rn → R such that for all
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(x, u; p)εX ×X ×Rn we have, Fx,u(∇uf1(u, v) +∇uuf1(u, v)p1) + ρ1θ
2
1(x, u),

...,
Fx,u(∇ufk(u, v) +∇uufk(u, v)pk) + ρkθ

2
1(x, u)

 εK

⇒

 f1(x, v)− f1(u, v) + 1
2p

T
1∇uuf1(u, v)p1,

...,
fk(x, v)− fk(u, v) + 1

2p
T
k∇uufk(u, v)pk

 εK

Definition 2.7 A twice differentiable function f = (f1, f2, ..., fk) : X × Y →
Rk is said to be second order (K,F )− (ρ, θ) -strongly pseudo convex function

at uεX for fixed vεY , if there exists θ1 : X ×X → R, ρi, i = 1, 2, ..., k and a

sublinear functional F : X×X×Rn → R such that for all (x, u; p)εX×X×Rn

we have,  Fx,u(∇uf1(u, v) +∇uuf1(u, v)p1) + ρ1θ
2
1(x, u),

...,
Fx,u(∇ufk(u, v) +∇uufk(u, v)pk) + ρkθ

2
1(x, u)

 εK

⇒

 f1(x, v)− f1(u, v) + 1
2p

T
1∇uuf1(u, v)p1,

...,
fk(x, v)− fk(u, v) + 1

2p
T
k∇uufk(u, v)pk

 εK0

Definition 2.8 A twice differentiable function f = (f1, f2, ..., fk) : X × Y →
Rk is said to be second order (K,G) − (σ, θ) -pseudo convex function in the

second variable at yεY for fixed xεX, if there exists θ2 : X ×X → R, σi, i =

1, 2, ..., k and a sublinear functional G : Y × Y × Rm → R such that for all

(v, u; q)εY × Y ×Rm we have, Gv,y(∇yf1(x, y) +∇yyf1(x, y)q1) + σ1θ
2
2(v, y),

...,
Fx,u(∇ufk(u, v) +∇uufk(u, v)pk) + σkθ

2
2(x, u)

 εK

⇒

 f1(x, v)− f1(x, y) + 1
2q

T
1 ∇yyf1(x, y)q1,

...,
fk(x, v)− fk(x, y) + 1

2q
T
k∇yyfk(x, y)qk

 εK

Definition 2.9 A twice differentiable function f = (f1, f2, ..., fk) : X × Y →
Rk is said to be second order(K,G)− (σ, θ) -strongly pseudo convex function
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at uεX for fixed vεY ,if there exists θ2 : X × X → R, σi, i = 1, 2, ..., k and a

sublinear functional G : Y ×Y ×Rm → R such that for all (v, y; q)εY ×Y ×Rm

we have,  Gv,y(∇yf1(x, y) +∇yyf1(x, y)q1}) + σ1θ
2
2(v, y),

...,
Gv,y(∇yfk(x, y) +∇yyfk(x, y)qk) + σkθ

2
2(v, y)

 εK

⇒

 f1(x, v)− f1(x, y) + 1
2q

T
1 ∇yyf1(x, y)q1,

...,
fk(x, v)− fk(x, y) + 1

2q
T
k∇yyfk(x, y)qk

 εK0

Lemma 2.1 Let B be a positive semi definite matrix of order n. Then for

all x,wεRn, xTBw ≤ (xTBx)
1
2 (wTBw)

1
2 . The equality holds if Bx = λBw for

some λ ≥ 0.

3. Second order multiobjective duality

We consider the following pair of second order Wolfe type nondifferentiable

multiobjective programming problem with k-objective:

Primal(SWP) L(x, y, λ, w, p) =

Minimize


f1(x, y) + (xTB1x)

1
2 − 1

2

∑k
i=1 λip

T
i (∇yyfi(x, y)pi)

−yT [
∑k

i=1 λi∇yfi(x, y) +
∑k

i=1 λi∇yyfi(x, y)pi],
...,

fk(x, y) + (xTBkx)
1
2 − 1

2

∑k
i=1 λip

T
i (∇yyfi(x, y)pi)

−yT [
∑k

i=1 λi∇yfi(x, y) +
∑k

i=1 λi∇yyfi(x, y)pi]


Subject to

−
k∑

i=1

λi[∇yfi(x, y)−Diwi +∇yyfi(x, y)pi]εC
∗
2 , (3.1)

wT
i Diwi ≤ 1, i = 1, 2, ..., k, (3.2)

xεC1, wiεR
m, (3.3)

λ ε int K∗,

k∑
i=1

λi = 1 (3.4)
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Dual(SWD) M(u, v, λ, z, q) =

Maximize


f1(u, v)− (vTD1v)

1
2 − 1

2

∑k
i=1 λiq

T
i (∇uufi(u, v)qi)

−uT [
∑k

i=1 λi∇ufi(u, v) +
∑k

i=1 λi∇uufi(u, v)qi],
...,

fk(u, v) + (vTDkv)
1
2 − 1

2

∑k
i=1 λiq

T
i (∇uufi(u, v)qi)

−uT [
∑k

i=1 λi∇ufi(u, v) +
∑k

i=1 λi∇uufi(u, v)qi]


Subject to

k∑
i=1

λi[∇ufi(u, v) +Bizi +∇uufi(u, v)qi]εC
∗
1 , (3.5)

zTi Bizi ≤ 1, i = 1, 2, ..., k, (3.6)

vεC2, ziεR
n, (3.7)

λ ε int K∗,

k∑
i=1

λi = 1 (3.8)

where

(1) f = (f1, f2, ..., fk) : Rn×Rm → Rk is thrice differentiable vector function,

(ii) C1 and C2 are closed convex cones in Rn and Rm with nonempty interi-

ors,respectively,

(iii) C∗1 and C∗2 are positive polar cones of C1 and C2 respectively,

(iv) K is a closed convex cone in Rk with intK 6= φ and Rk
+ ⊂ K,

(v) qi, zi, i = 1, 2, ..., k are vectors in Rn and pi, wi, i = 1, 2, ..., k are vectors in

Rm.

(vi) B = (B1, B2, ..., Bk) andD = (D1, D2, ..., Dk), Bi and Di are positive

semidefinite matrices of order n and m respectively. Now we established the

following theorem
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Theorem 3.1 (Weak Duality)Let (x, y, λ, w, p) be feasible solution for

the primal (SWP) and (u, v, λ, z, q) be feasible solution for the dual (SWD).

Suppose there exist θ1 : X ×X → R, θ2 : Y ×Y → R, ρiεR, σiεR, i = 1, 2, ..., k

and sublinear functional F : X ×X ×Rn → R and G : Y × Y ×Rm satisfying

(1)Fx,u(a) +
∑k

i=1 λiρiθ
2
1(x, u)− uTa ≥ 0,∀(x, u)εC1 × C2, aεC

2
1 ,

(2)Gv,y(b) +
∑k

i=1 λiσiθ
2
2(v, y)− yT b ≥ 0,∀(x, u)εC1 × C2, aεC

2
1 ,

Furthermore assume that for each i

(3) f(., v) + (.)TBz is second order (K,F ) − (ρ, θ)-pseudo convex in the first

variable at u for fixed v and

(4) f(x, .) + (.)TDw is second order (K,F ) − (ρ, θ) -pseudo concave in the

second variable at y for fixed x .

Then Inf(SWP )− Sup(SWD)εK

. Proof: Since (u, v, λ, z, q) is feasible solution for (SWD), from dual constraint

(3.5) we have a =
∑k

i=1 λi[∇ufi(u, v) +Bizi +∇uufi(u, v)qi]εC
∗
1 .

Since uεC1, we have

uTa = uT
k∑

i=1

λi[∇ufi(u, v) +Bizi +∇uufi(u, v)qi] ≥ 0. (3.9)

So, hypothesis (1) in lieu of (3.9), implies that

Fx,u(a) +

k∑
i=1

λiρiθ
2
1(x, u) ≥ 0.

i.e.

Fx,u(

k∑
i=1

λi[∇ufi(u, v) +Bizi +∇uufi(u, v)qi]) +

k∑
i=1

λiρiθ
2
1(x, u) ≥ 0. (3.10)

The sublinearity of F with respect to third argument and (3.10) gives

k∑
i=1

λi[Fx,u(∇ufi(u, v) +Bizi +∇uufi(u, v)qi) + ρiθ
2
1(x, u)] ≥ 0. (3.11)
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Since λε intK∗, the above inequality can be written as Fx,u(∇uf1(u, v) +B1z1 +∇uuf1(u, v)p1) + ρ1θ
2
1(x, u),

...,
Fx,u(∇ufk(u, v) +Bkzk +∇uufk(u, v)pk) + ρkθ

2
1(x, u)

 εK. (3.12)

So, second order (K,F )− (ρ, θ)-pseudo convexity of fi(., v) + (.)TBizi at u for

fixed v implies that f1(x, v) + xTB1z1 − f1(u, v)− uTB1z1 + 1
2q

T
1 ∇uuf1(u, v)q1,

...,
fk(x, v) + xTBkzk − fk(u, v)− uTBkzk + 1

2q
T
k∇uufk(u, v)qk

 εK.

For λε intK∗,

k∑
i=1

λi[fi(x, v) + xTBizi − fi(u, v)− uTBizi +
1

2
qTi ∇uufi(u, v)qi] ≥ 0. (3.13)

Similarly (u, v, λ, w, q) is feasible solution for (SWD), so from primal con-

straint (3.1), we have

b = −
k∑

i=1

λi[∇yfi(x, y)−Diwi +∇yyfi(x, y)pi]εC
∗
2 .

So yεC2 implies that

yT b = −yT
k∑

i=1

λi[∇yfi(x, y)−Diwi +∇yyfi(x, y)pi] ≥ 0. (3.14)

Again hypothesis (2) in lieu (3.14), implies that

Gv,y(b) +
k∑

i=1

σiθ
2
2(v, y) ≥ 0.

i.e.

Gv,y(−
k∑

i=1

λi[∇yfi(x, y)−Diwi +∇yyfi(x, y)pi]) +
k∑

i=1

σiθ
2
2(v, y) ≥ 0

k∑
i=1

λi[Gv,y(−[∇yfi(x, y)−Diwi +∇yyfi(x, y)pi]) + σiθ
2
2(v, y)] ≥ 0. (3.15)
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Since λ ∈ intK∗, inequality (3.15) can be written as Gv,y(−[∇yf1(x, y)−D1w1 +∇yyf1(x, y)p1]) + σ1θ
2
2(v, y),

...,
Gv,y(−[∇yfk(x, y)−Dkwk +∇yyfk(x, y)pk]) + σkθ

2
2(v, y)

 ∈ K. (3.16)

From hypothesis (4) and (3.16), we obtained −[f1(x, v)− (v)TD1w1 − f1(x, y) + (y)TD1w1 + 1
2p

T
1∇yyf1(x, y)p1],

...,
−[fk(x, v)− (v)TDkzk − fk(x, y) + (y)TDkwk + 1

2p
T
k∇yyfk(x, y)pk]

 ∈ K.
This implies that for λ ∈ intK∗

k∑
i=1

λi[−fi(x, v) + (v)TDiwi + fi(x, y)− (y)TDiwi − 1
2p

T
i ∇yyfi(x, y)pi] ≥ 0.

(3.17)

Adding (3.13) and (3.17), we get

k∑
i=1

λi[fi(x, y) + (x)TBizi − (y)TDiwi − 1
2p

T
i ∇yyfi(x, y)pi)]

−
k∑

i=1

λi[fi(u, v)− (v)TDiwi + uTBizi − 1
2q

T
i ∇uufi(u, v)qi] ≥ 0. (3.18)

Now from Schwarz inequality, (3.3) and (3.7), we have,

xTBizi ≤ (xTBix)
1
2 (zTi Bizi)

1
2 ≤ (xTBix)

1
2 , i = 1, 2, ..., k. (3.19)

vTDiwi ≤ (vTDiv)
1
2 (wT

i Diwi)
1
2 ≤ (vTDiv)

1
2 , i = 1, 2, ..., k. (3.20)

Also from primal constraint (3.1), we have

−
k∑

i=1

λi[∇yfi(x, y)−Diwi +∇yyfi(x, y)pi] ∈ C∗2 .

Form (3.14), we have

yT (

k∑
i=1

λi[∇yfi(x, y)−Diwi +∇yyfi(x, y)pi]) ≤ 0

⇒ −
k∑

i=1

λi[y
TDiwi] ≤ −yT (

k∑
i=1

λi[∇yfi(x, y) +∇yyfi(x, y)pi]). (3.21)
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Similarly from dual constraint (3.5), we get

k∑
i=1

λi[u
TBizi] ≥ −uT (

k∑
i=1

λi[∇ufi(u, v) +∇uufi(u, v)qi]). (3.22)

Using (3.19), (3.20),(3.21) and (3.22) in (3.18), we obtain that

k∑
i=1

λi{[fi(x, y)+(xTBix)
1
2−yT [∇yfi(x, y)+∇yyfi(x, y)pi]−1

2p
T
i [∇yyfi(x, y)pi]}

−
k∑

i=1

λi{fi(u, u)−(vTDiv)
1
2−uT [∇ufi(u, v)+∇uufi(u, v)qi]−1

2q
T
i [∇uufi(u, v)qi]} ≥ 0.

⇒ Inf(SWP )− Sup(SWD) ∈ K.

In order to prove the strong duality theorem, we obtain the following Lemma

established by Suneja et al. [19]. It gives Fritz-John type necessary optimality

conditions for a weakly efficient solution of (P).

Lemma 3.1 If x̄ is a weakly efficient solution of (P), then there exist µ̄ ∈
K∗, β̄ ∈ Q∗, not both zero, such that (x − x̄)T [µ̄∇f(x̄) + β̄∇g(x̄)] ≥ 0, ∀x ∈
Cand β̄T g(x̄) = 0.

Theorem 3.2(Strong duality) Let (x̄, ȳ, λ̄, w̄, p̄) be weakly efficient solution

of (SWP) such that

(i) ∇yy(
∑k

i=1 λifi(x̄, ȳ)) is nonsingular,

(ii) p̄i 6= 0 implies
∑k

i=1 λ̄i∇y(∇yyfi(x̄, ȳ)p̄i)p̄i 6= 0,

(iii) the vectors ∇yf1(x̄, ȳ), ....,∇yfk(x̄, ȳ) are linearly independent,

(iv) the vector
∑k

i=1 λ̄i∇y(∇yyfi(x̄, ȳ)p̄i)p̄i /∈ span{∇yf1(x̄, ȳ), ....,∇yfk(x̄, ȳ)}\{0}.

Then there exist z̄i ∈ Rn such that (x̄, ȳ, λ̄, z̄, q̄ = 0) is feasible for (SWD)

and two objective values of (SWP) and (SWD) are equal. Furthermore, if the

hypotheses of Theorem 3.1 are satisfied for all feasible solution of (SWP) and

(SWD), then (x̄, ȳ, λ̄, z̄, q̄ = 0) is an efficient solution of (SWD).
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Proof: Since (x̄, ȳ, λ̄, w̄, p̄) is weakly efficient solution of (SWP), by Lemma

3.1, there exist µ̄ ∈ K∗, β̄ ∈ C2, γ̄ ∈ R+, δ̄i ∈ R+, z̄ ∈ Rn such that

(x−x̄)T

 ∑k
i=1 µ̄i[∇xfi(x̄, ȳ) +Biz̄i]

+
∑k

i=1 λi(∇yxfi(x̄, ȳ))T (β̄ − ȳ
∑k

i=1 µ̄i)

+
∑k

i=1 λi∇x(∇yyfi(x̄, ȳ)p̄i)
T [β̄ − (

∑k
i=1 µ̄i)(ȳ + 1

2 p̄i)]

 ≥ 0,∀x ∈ C1,

(3.23)

(y − ȳ)T


[µ̄− λ̄i(

∑k
i=1 µ̄i)]∇yfi(x̄, ȳ)

+
∑k

i=1 λi(∇yyfi(x̄, ȳ))T (β̄ − ȳ
∑k

i=1 µ̄i)

−(
∑k

i=1 µ̄i)
∑k

i=1 λi(∇yyfi(x̄, ȳ))pi
+(
∑k

i=1 λi∇y(∇yyfi(x̄, ȳ))p̄i)
T [β̄ − (

∑k
i=1 µ̄i)(ȳ + 1

2 p̄i)]

 ≥ 0,

(3.24)

for all y ∈ Rm.

(λ− λ̄)T

(
∇yfi(x̄, ȳ)T (β̄ − ȳ

k∑
i=1

µ̄i) + δek

)

+

(
(β̄ − (

∑k
i=1 µ̄i)(y

T + 1
2 p̄i)

T∇yyf1(x̄, ȳ)p̄i, ...,

(β̄ − (
∑k

i=1 µ̄i)(y
T + 1

2 p̄k)T∇yyfk(x̄, ȳ)p̄k

)T

≥ 0, (3.25)

for all λ ∈ intK∗ and ek = (1, 1, ..., 1) ∈ Rk.

k∑
i=1

λi(∇yyfi(x̄, ȳ)(β − (

k∑
i=1

µ̄i)(ȳ + p̄i)) = 0, (3.26)

β̄T
k∑

i=1

λ̄i(∇yfi(x̄, ȳ)−Diw̄i +∇yyfi(x̄, ȳ)p̄i) = 0, (3.27)

xTBizi = (xTBix)
1
2 , i = 1, 2, ..., k, (3.28)

δ̄(
k∑

i=1

λ̄i − 1)− 0, (3.29)

(−Diβ̄ + γ̄Diw̄i) = 0, i = 1, 2, ..., k; (3.30)

γ̄(w̄T
i Diw̄i − 1) = 0, i = 1, 2, ..., k; (3.31)

z̄Ti Biz̄i ≤ 1, (3.32)

(α, β, γ, δ) ≥ 0, (3.33)

(α, β, γ, δ) 6= 0, (3.34)
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Since ∇yy(
∑k

i=1 λifi(x̄, ȳ)) is nonsingular, (3.26) gives

β = (

k∑
i=1

µi)(ȳ + p̄i). (3.35)

From (3.24) and (3.25), we obtained [µ̄− λ̄i(
∑k

i=1 µ̄i)][∇yfi(x̄, ȳ) +
∑k

i=1 λi(∇yyfi(x̄, ȳ))T (β̄ − ȳ
∑k

i=1 µ̄i)

−(
∑k

i=1 µ̄i)
∑k

i=1 λi(∇yyfi(x̄, ȳ)pi
+
∑k

i=1 λi(∇y(∇yyfi(x̄, ȳ)p̄i))
T [β̄ − (

∑k
i=1 µ̄i)(ȳ + 1

2 p̄i)]

 = 0,

(3.36)

and (
∇yfi(x̄, ȳ)T (β̄ − ȳ

k∑
i=1

µ̄i) + δek

)

+

(
(β̄ − (

∑k
i=1 µ̄i)(y

T + 1
2 p̄i))

T∇yyf1(x̄, ȳ)p̄i, ...,

(β̄ − (
∑k

i=1 µ̄i)(y
T + 1

2 p̄k))T∇yyfk(x̄, ȳ)p̄k

)T

= 0. (3.37)

We claim that µ̄ 6= 0.

To do so, suppose µ̄ = 0. So
∑k

i=1 µ̄i = 0.

Then (3.35) gives β = 0,which along with (3.37) yields δ̄ek = 0 or δ̄ = 0.

From (3.30) and (3.31), we have

γ̄ = γ̄(w̄T
i Diw̄i) = w̄i(γ̄Diw̄i) = w̄i(Diβ̄) = 0.

Thus (µ̄, β̄, γ̄, δ̄) = 0, this contradicts (3.34).

Hence

µ̄ 6= 0. (3.38)

Since µ̄ ∈ K∗ and Rk
+ ⊆ K implies K∗ ⊆ Rk

+, so we get

µ̄ ≥ 0 or

k∑
i=1

µ̄i > 0. (3.39)

From (3.35) and (3.36), we get [µ̄− λ̄i(
∑k

i=1 µ̄i)][∇yfi(x̄, ȳ) +
∑k

i=1 λi(∇yyfi(x̄, ȳ))T (
∑k

i=1 µ̄i)p̄i
−(
∑k

i=1 µ̄i)
∑k

i=1 λi(∇yyfi(x̄, ȳ)p̄i
+
∑k

i=1 λi(∇y(∇yyfi(x̄, ȳ)p̄i))
T [(
∑k

i=1 µ̄i)(
1
2 p̄i)]

 = 0,
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or

[
k∑

i=1

λi(∇y(∇yyfi(x̄, ȳ))p̄i]p̄i = − 2∑k
i=1 µ̄i

[µ̄− λ̄i(
k∑

i=1

µ̄i)][∇yfi(x̄, ȳ)]. (3.40)

Now suppose p̄i = 0, i = 1, 2, ...k. Then hypothesis (ii) implies that∑k
i=1 λ̄i∇y(∇yyfi(x̄, ȳ)p̄i)p̄i 6= 0, which in view of (3.40) contradicts hypothesis

(iv).

Therefore

p̄i = 0, i = 1, 2, ...k. (3.41)

Since the vectors ∇yf1(x̄, ȳ), ....,∇yfk(x̄, ȳ) are linearly independent, (3.40)

and (3.41) yield

µ̄ = λ̄i(
k∑

i=1

µ̄i). (3.42)

From (3.35) and (3.42), we obtain

β = (

k∑
i=1

µi)ȳ. (3.43)

or

ȳ =
β

(
∑k

i=1 µi)
∈ C2. (3.44)

Again using (3.39) , (3.41), (3.42) and (3.43) in (3.23), we get

(x− x̄)T (

k∑
i=1

λi[∇xfi(x̄, ȳ) +Biz̄i]) ≥ 0,∀x ∈ C1. (3.45)

Let x ∈ C1. Then x+ x̄ ∈ C1and so (3.45) implies that

(x)T
k∑

i=1

λi[∇xfi +Bizi] ≥ 0, ∀x ∈ C1

i.e.
k∑

i=1

λi[∇xfi +Bizi] ∈ C∗1 . (3.46)

Thus from (3.32),(3.44) and (3.46), we obtain that (x̄, ȳ, λ̄, z̄, q̄ = 0) satisfies

the dual constraints (3.5), (3.6), (3.7) and (3.8).
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Thus (x̄, ȳ, λ̄, z̄, q̄ = 0) is feasible for (SWD).

Now letting x = 0 and x = 2x̄ in (3.45), we get

x̄T (
k∑

i=1

λi[∇xfi(x̄, ȳ) +Biz̄i]) = 0,

or using (3.28), we get

x̄T (
k∑

i=1

λi[∇xfi(x̄, ȳ)) = −x̄TBiz̄i = −(x̄TBix̄)
1
2 . (3.47)

Again (3.27) along with (3.39), (3.41) and (??) gives

ȳT (
k∑

i=1

λi[∇yfi(x̄, ȳ) = ȳTDiw̄i. (3.48)

From (3.30) and (3.43,) we get

Diȳ =
γ̄

(
∑k

i=1 µi)
Diw̄i (3.49)

or

Diȳ = aDiw̄i, wherea =
γ

(
∑k

i=1 µ̄i)
≥ 0. (3.50)

Under this condition of the Schwarz inequality holds as equality. Therefore

ȳDiw̄i = (ȳTDiȳ)
1
2 (w̄T

i Diw̄i)
1
2 . (3.51)

In case γ > 0, from (3.31), we get w̄T
i Diw̄ = 1.

So (3.50) implies ȳDiw̄i = (ȳTDiȳ)
1
2 .

In case γ̄ = 0, from (3.49), we get Diȳ = 0 and so ȳDiw̄i = 0 = (ȳTDiȳ)
1
2 .

Thus in either case

ȳTDiw̄i = (ȳTDiȳ)
1
2 . (3.52)

So, from (3.48) and (3.52), we find

ȳT (

k∑
i=1

λi[∇yfi(x̄, ȳ) = (ȳTDiȳ)
1
2 . (3.53)

So using (3.41), (3.47) and (3.53), we conclude that the two objective values

are equal,
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i.e. for every i ∈ {1, 2, ..., k}

fi(x, y)+(xTBix)
1
2−yT [

k∑
i=1

λi∇yfi(x, y)] = fi(u, v)−(vTDiv)
1
2−uT [

k∑
i=1

λi∇ufi(u, v)]

i.e.

L(x̄, ȳ, λ̄, w̄, p̄ = 0) = M(x̄, ȳ, λ̄, z̄, q̄ = 0). (3.54)

Now we claim that (x̄, ȳ, λ̄, z̄, q̄ = 0) is efficient solution of (SWD). If this would

not be case, the there would exist a feasible solution (ū, v̄, λ̄, z̄, q̄ = 0)such that

M(x̄, ȳ, λ̄, z̄, q̄ = 0) ≤M(ū, v̄, λ̄, z̄, q̄ = 0)⇒ L(x̄, ȳ, λ̄, z̄, q̄ = 0) ≤M(ū, v̄, λ̄, z̄, q̄ = 0).

This is a contradiction to weak duality Theorem 3.1.

Hence (x̄, ȳ, λ̄, z̄, q̄ = 0)is efficient solution of dual (SWD)

Theorem 3.3 (Converse duality theorem) ) Let (x̄, ȳ, λ̄, w̄, p̄) be weakly

efficient solution of (SWP) such that

(i) ∇uu(
∑k

i=1 λifi(ū, v̄)) is nonsingular,

(ii) q̄i 6= 0 implies
∑k

i=1 λ̄i∇u(∇uufi(ū, v̄))q̄i)q̄i 6= 0,

(iii) the vectors ∇uf1(ū, v̄), ....,∇ufk(ū, v̄) are linearly independent.

(iv) the vector
∑k

i=1 λ̄i∇u(∇uufi(ū, v̄))q̄i)q̄i /∈ span{∇uf1(ū, v̄), ...,∇ufk(ū, v̄)}\{0}.

Then there exist w̄i ∈ Rm such that (ū, v̄, λ̄, w̄, p̄ = 0) is feasible for (SWD)

and two objective values of (SWP) and (SWD) are equal. Furthermore, if the

hypotheses of Theorem 3.1 are satisfied for all feasible solution of (SWP) and

(SWD), then (ū, v̄, λ̄, w̄, p̄ = 0) is an efficient solution of (SWD).

Proof: The proof follows on lines of Theorem 3.2.

4. Special Cases

(i) If Bi = Di = 0, k = 1; then the problem (SWP) and (SWD) can be

reduced to the problem proposed by Gulati et al. [7] as follows:

Primal (WP):

Minimize f(x, y)− yT [∇yf(x, y) +∇yyf(x, y)p]− 1
2p

T [∇yyf(x, y)p]
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Subject to −[∇yfi(x, y) +∇yyfi(x, y)pi] ∈ C∗2 ,

x ∈ C1,

Dual (WD):

Maximize f(u, u) + uT [∇uf(u, v) +∇uuf(u, v)q]− 1
2q

T [∇uuf(u, v)q]

Subject to ∇uf(u, v) +∇uuf(u, v)q ∈ C∗1 ,

v ∈ C2,

(ii) If k=1, C1 = Rn
+, C2 = Rm

+ ,(x
TBx)

1
2 = s(x|C ′) and (yTDy)

1
2 =

s(y|D′), where C ′ = {Bx|xTBx ≤ 1},D′ = {Dy|yTDy ≤ 1}, then the

problem (SWP) and (SWD) can be reduced to the problem proposed

by Yang et al. [21]

Primal (WP):

Minimize f(x, y)+s(x|C ′)−yT [∇yf(x, y)+∇yyf(x, y)p]−1
2p

T [∇yyf(x, y)p]

Subject to ∇yf(x, y)− z +∇yyf(x, y)p ≤ 0,

x ≥ 0, z ∈ D′.

Dual (WD):

Maximize f(u, u)−s(v|D′)−uT [∇uf(u, v)+∇uuf(u, v)q]−1
2q

T [∇uuf(u, v)q]

Subject to ∇uf(u, v) +∇uuf(u, v)q ≥ 0,

v ≥ 0, w ∈ C ′.

5. Numerical Example

Let k=2, m=n-1,

K = {(x, y) : x ≥ 0, y ≥ 0}, intK∗ = {(x, y) : x > 0, y > 0},
C1 = R+, C2 = R+C

∗
1 = R+ and C∗2 = R+.

Let f = (f1, f2) : R × R → R2 be defined as f(x, y) = (f1(x, y), f2(x, y)),

where f1(x, y) = x2 − x− y2 + y, f2(x, y) = e−x − e−y.
Let p1, p2 ∈ R, z1, z2, w1, w2 ∈ [0, 1], B1 = B2 = D1 = D2 = 1.
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Then our problems primal and dual problem reduces to

Primal: SWP

Minimize

(
x2 − y2 + y + λ1(2y

2 − y + 2yp1 + p21) + λ2e
−y(yp2 − y + 1

2p
2
2),

e−x − e−y + x+ λ1(2y
2 − y + 2yp1 + p21) + λ2e

−y(yp2 − y + 1
2p

2
2)

)

Subject to

λ1(2y + w1 + 2p1 − 1) + λ2(e
−yp2 + w2 − e−y) ∈ C∗2 , (5.1)

w2
1 ≤ 1, w2

2 ≤ 1, (5.2)

x ∈ C1, w1, w2 ∈ [0, 1], p1, p2 ∈ R, (5.3)

λ ∈ intK∗, λ1 + λ2 = 1. (5.4)

Dual: SWD

Maximize

(
u2 − u− v2 − λ1(2u2 − u+ 2uq1 − q21) + λ2e

−u(uq2 + q22 − u),
e−u − e−v − v − λ1(2u2 − u+ 2uq1 − q21) + λ2e

−u(uq2 + q22 − u)

)

Subject to

λ1(2u+ z1 + 2q1 − 1) + λ2(−e−u + z2 + e−uq2) ∈ C∗1 , (5.5)

z21 ≤ 1, z22 ≤ 1, (5.6)

v ∈ C2, z1, z2 ∈ [0, 1], q1, q2 ∈ R, (5.7)

λ ∈ intK∗, λ1 + λ2 = 1. (5.8)

Let there exist θ1 : R × R → R and θ2 : R × R → R defined as θ1(x, u) =
√
x2 + u2, θ2(x, u) =

√
v2 + y2 and ρ1 = 3, ρ2 = −2,σ1 = −2, σ2 = 1

Let F : R × R × R → R and G : R × R × R → R are the functional defined

as Fx,u(a) = F (x, u; a) = a(x2 + u2) and Gv,y(b) = G(v, y; b) = b(v2 + y2) and

satisfying

(1) Fx,u(a) +
∑k

i=1 λiρiθ
2
1(x, u)− uTa ≥ 0, ∀(x, u) ∈ C1 × C1, a ∈ C∗1 , and

(2) Gv,y(b)+
∑k

i=1 λiσiθ
2
2(v, y)−yT b ≥ 0,∀(v, y) ∈ C2×C2, b ∈ C∗2 respectively.
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Clearly F and G are sublinear in their third argument.

Now, a1 = ∇uf1(u, v) + z1 +∇uuf1(u, v)q1 = 2u+ 2q1 + z1 − 1,

a2 = ∇uf2(u, v) +∇uuf2(u, v)q2 = −e−u + e−uq2 + z2.

b1 = ∇yf1(x, y) + w1 +∇yyf1(x, y)p2 = −2y + 1 + w1 − 2p1,

b2 = ∇yf2(x, y) + w2 +∇yyf2(x, y)p2 = e−y − e−yp2 + w2,

From (5.5) and hypothesis (1), we find

(F (x, u; a1) + ρ1θ
2(x, u), F (x, u; a2) + ρ2θ

2(x, u)) ∈ K

⇒ ((2u+ 2p1 + z1 − 1 + 3)(x2 + u2), (−e−u + e−up2 + z2 − 2)(x2 + u2)) ∈ K

⇒ 2u+ 2p1 + z1 − 1 + 3 ≥ 0 and −e−u + e−up2 + z2 − 2 ≥ 0

⇒ p1 ≥ −1− u− 1
2z1 and p2 ≥ 1 + 2eu − z2eu

Now, f1(x, v) + xz1 − f1(u, v)− uz1 + 1
2p

T
1∇uuf1(u, v)p1

= x2 − x− u2 + u+ z1(x− u) + (p1)
2

≥ x2 − x− u2 + u+ z1(x− u) + (1 + u+ 1
2z1)

2

= x2 − x+ z1x+ 1 + 3u+ 1
4z

2
1 + z1 ≥ 0, ∀x, u ∈ R+

and f2(x, v + xz2 − f2(u, v)− uz2 + 1
2p

T
2∇uuf2(u, v)p2)

= e−x − e−u + z2(x− u) + 1
2p

2
2e
−u

≥ e−x − e−u + 1
2(1 + 2eu − euz2)2e−u + z2(x− u)

= e−x − 1
2e
−u + eu(4 + 1

2z
2
2 − 2z2) + 2− z2 + z2(x− u) ≥ 0,

∀x, u ∈ R+ and z1, z2 ∈ [0, 1].

So,

(f1(x, v)−f1(u, v)+1
2p

T
1∇uuf1(u, v)p1, f2(x, v)−f2(u, v)+1

2p
T
2∇uuf2(u, v)p2)) ∈ K.

Hence f = (f1, f2) : R→ R2 is second order (K,F )− (ρ, θ) -pseudo convex at

u ∈ R+ for all x ∈ R and fixed v.

Similarly, f = (f1, f2) : R→ R2 is second order (K,F )−(ρ, θ) -pseudo concave

at y for fixed x.
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So, all the conditions of Theorem 3.1 are satisfied.

Again, from primal constraint (5.1) to (5.4), we observed that,

(x = 1, y = 0, λ1 = 1
2 , λ2 = 1

2 , w1 = 1
2 , w2 = 1

2 , p1 = 1
2 , p2 = 2)is a feasible

solution of (SWP)

and the value of the objective functions at this point is (4, 1.49)

Also, from dual constraint (5.5) to (6.8), we see that

(u = 1, v = 0, λ1 = 1
2 , λ2 = 1

2 , z1 = 1
2 , z2 = 1

2 , q1 = 1
2 , q2 = 2) is a feasible

solution of (SWD) and the value of the objective functions at this point is

(0.0446,−0.587).

From the above discussion, we observe that Inf(SWP )− Sup(SWD) ∈ K.
Hence the duality results holds good.

6. Conclusion

In this paper, a new class of second order (K,F ) − (ρ, θ) pseudo convex/

second order (K,F ) − (ρ, θ) strongly pseudo convex function is introduced

with example. A pair of Wolfe type second order nondifferentiable symmetric

dual programs over arbitrary cone containing square root term of positive

semidefinite quadratic form is formulated. The duality results are established

under second order (K,F )−(ρ, θ)-pseudo convexity assumption. A numerical

example is given to substantiate the analysis. The results developed in this

paper cane be further extended to fractional programming.
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