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Abstract A model is set up which embodies the basic features of Adaptive

quadrature routines involving mixed rules. Not before mixed quadrature rules

basing on anti-Gaussian quadrature rule have been used for fixing termination

criterion in Adaptive quadrature routines. Two mixed quadrature rules of

higher precision for approximate evaluation of real definite integrals have been

constructed using an anti-Gaussian rule for this purpose. The first is the linear

combination of anti-Gaussian three point rule and Simpsons 1/3rd rule , the

second is the linear combination of anti-Gaussian three point rule and Simp-

sons 3/8th rule. The analytical convergence of the rules have been studied.

The error bounds have been determined asymptotically. Adaptive quadrature

routines being recursive by nature, a termination criterion is formed taking in

to account two mixed quadrature rules. The algorithm presented in this paper

has been “C” programmed and successfully tested on different integrals. The

efficiency of the process is reflected in the table at the end.
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1. Introduction

Given a real integrable function f an interval [a, b] and a prescribed tolerance

ε, it is desired to compute an approximation P to the integralI =
∫ b
a f(x)dx,

so that |P − I| ≤ ε. This can be done following adaptive integration schemes

developed in papers [2,3,6,7,8,9]. In adaptive integration, the points at which

the integrand is evaluated ,are chosen in a way that depends on the nature of

the integrand. The basic principle of adaptive quadrature routines is discussed

in the following manner.

If c is any point between a and b ,then∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx

The idea is that if we can approximate each of the two integrals on the right

to within a specified tolerance, then the sum gives us the desired result. If not

we can recursively apply the adaptive property to each of the intervals [a, c]

and [c, b]. Adaptive subdivision of course has geometrical appeal. It seems

intuitive that points should be concentrated in regions where the integrand is

badly behaved. The whole interval rules can take no direct account of this.

In this paper we design an algorithm for numerical computation of integrals

in the adaptive quadrature routines involving mixed rules. The literature

of the mixed quadrature rule [5,6,7,8,9] involves construction of a symmetric

quadrature rule of higher precision as a linear/convex combination of two other

rules of equal lower precision.
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So far as anti-Gaussian quadrature is concerned, Dirk P. Laurie [1] is the

first person to coin the idea of anti-Gaussian quadrature formula . An anti-

Gaussian quadrature formula is an (n + 1) point formula of degree (2n − 1)

which integrates all polynominals of degree up to (2n+ 1) with an error equal

in magnitude but opposite in sign to that of n-point Gaussian formula.

If H(n+1)(f)=
∑n+1

i=1 λif(ξi) be (n + 1) point anti-Gaussian formula and

G(n)(p) be n point Gaussian formula, then by hypothesis :

I(p)−H(n+1)(p) = - (I(p)− G(n)(p)),p ∈ P2n+1.Where p is a polynomial of

degree ≤(2n + 1). In this paper we design a three point anti-Gaussian rule

following LAURIE[1].

As the anti-Gaussian three point rule RH3
w(f) [1] and Simpsons 1/3rd rule

RSm1/3(f) rules are of same precision (i.e precision 3), one can form a mixed

quadrature rule RH3
wSm1/3(f) of precision five by taking a suitable linear

combination of these two rules. Similarly one can form a mixed quadrature

rule RH3
wSm3/8(f)of precision five by taking linear combination of the anti-

Gaussian three point rule RH3
w(f) and Simpsons3/8th rule RSm3/8(f).

After Laurie, use of anti-Gaussian quadrature is not seen in literature.In

this paper, first time we incorporate the idea of anti-Gaussian quadrature to

form mixed quadrature rules. Further, we use this type of mixed rules in

adaptive quadrature routines.

To prepare an algorithm for adaptive quadrature routines in evaluating an

integral I =
∫ b
a f(x)dx,we use the following two mixed quadrature rules.

(i) RH3
wSm1/3(f) as I1

(ii) RH3
wSm3/8(f) as I2.

The adaptive strategies can be found in standard texts in numerical analysis.
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2. Construction of anti-Gaussian three point rule from

Gauss-legendre two point rule.

We choose the Gauss-Legendre two point rule :

G2
w (f) = f

(
1√
3

)
+ f

(
− 1√

3

)
(1)

We develop a three point anti-Gaussian rule RH3
w(f)from two point Gauss-

ian rule G2
w(f) following Laurie.

We take RH3
w(f) = α1f (ξ1) + α2f (ξ2) + α3f (ξ3).

In order to obtain the unknown weights and nodes, we assume that

(i) The rule is exact for all polynomial of degree ≤ 3.

(ii) The rule integrates all polynomials of degree up to five with an error

equal in magnitude and opposite in sign to that of Gaussian rule. Thus

we obtain a system of six equations having six unknowns namely αi,ξi

(i = 1, 2, 3).

Solving the resulting system of equations we get,

α1 =
5

13
= α3, α2 =

16

13
, ξ1 = ±

√
13

15
, ξ2 = 0, ξ3 = ∓

√
13

15

Hence, the method becomes

∫ 1

−1
f(x)dx ≈ RH3

w(f) =
5

13
f

(
−
√

13

15

)
+

16

13
f (0) +

5

13
f

(√
13

15

)
. (2)

The error associated with the method (2) is computed as

EH3
w(f) =

∫ 1

−1
f(x)dx−RH3

w(f) =
−f iv(0)

135
− 1016fvi(0)

7!× 675
+ . . . (3)
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3. Construction of mixed quadrature rule by using

anti-Gaussian three point rule with Simpson’s 1/3rd rule

We have the anti-Gaussian three point rule:

RH3
w(f) =

5

13
f

(
−
√

13

15

)
+

16

13
f (0) +

5

13
f

(√
13

15

)
(4)

and Simpson’s 1/3rd rule

RSm1/3(f) =
1

3
[f (−1) + 4f (0) + f (1)] (5)

Each of the rules RH3
w(f) and RSm1/3(f) is of precision three.

Let EH3
w(f) and ESm1/3(f) denote the errors in approximating the inte-

gral I(f)by the rules RH3
w(f) and RSm1/3(f) respectively.

Now

I(f) = RH3
w(f) + EH3

w(f) (6)

I(f) = RSm1/3(f) + ESm1/3(f) (7)

Using Maclaurines expansion of the functions in equation (4) and (5),we have

EH3
w(f) =

−f iv(0)

135
− 2× 508

7!× 675
fvi(0) + . . . (8)

ESm1/3(f) =
−1

90
f iv(0)− 8

7!× 675
fvi(0) + . . . (9)

Eliminating f iv(0) from equation (8) and (9) we have

I(f) = 3RH3
w(f)− 2RSm1/3(f) + 3EH3

W (f)− 2ESm1/3(f). (10)

or

I(f) = RH3
wSm1/3(f) + EH3

wSm1/3(f) (11)

where

RH3
wSm1/3(f) = 3RH3

w(f)− 2RSm1/3(f) (12)
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RH3
wSm1/3(f) =

15

13
f

(
−
√

13

15

)
+

48

13
f(0)

+
15

13
f

(√
13

15

)
− 2

3
[f(−1) + 4f(0) + f(1)] (13)

This is the desired mixed Quadrature rule of precision five for the approxi-

mate evaluation of I(f). The truncation error generated in this approximation

is given by.

EH3
wSm1/3(f) = 3EH3

w(f)− 2ESm1/3(f) (14)

or

EH3
wSm1/3(f) =

184

7!× 225
fvi(0) + ... (15)

∣∣EH3
wSm1/3(f)

∣∣ ∼= 184

7!× 225

∣∣fvi(ξ)∣∣ , ξ ∈ [−1, 1] (16)

The rule RH3
wSm1/3(f) is called a mixed type rule of precision five as it is

constructed from two different types of the rules of the same precision .

4. Construction of mixed Quadrature rule by using

anti-Gaussian three point rule with Simpsons 3/8th rule:

Anti-Gaussian three point ruleRH3
w(f) and Simpson’s 3/8th ruleRSm3/8(f)

are mixed in the same manner as described in article 3 to get another mixed

rule RH3
wSm3/8(f) and the corresponding error EH3

wSm3/8(f).

Where

RH3
wSm3/8(f) =

3

4

[
f(−1) + 3

{
f

(
−1

3

)
+ f

(
1

3

)}
+ f(1)

]

−

[
10

13

{
f

(
−
√

13

15

)
+ f

(√
13

15

)}
+

32

13
f(0)

]
(17)

This mixed quadrature rule is also of precision five.
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And

EH3
wSm3/8(f) =

(
23

135× 729× 105
− 127x2

405× 630× 675

)
fvi(0) + . . . (18)

| EH3
wSm3/8(f) | ≤ |

(
23

135× 729× 105
− 127x2

405× 630× 675

)
fvi(ξ) | , ξ ∈ [−1, 1]

5. Error analysis

An asymptotic error estimate and an error bound of the rule (12) are given

below.

Theorem 1. Let f(x) be sufficiently differentiable function in the closed inter-

val [−1, 1]. Then the error EH3
wSm1/3(f) associated with the rule RH3

wSm1/3(f)

is given by

∣∣EH3
wSm1/3(f)

∣∣ ≤ 184

7!× 225

∣∣fvi(ξ)∣∣ , ξ ∈ [−1, 1] (19)

Proof : From (12) and (14) we have

RH3
wSm1/3(f) = 3RH3

w(f)− 2RSm1/3(f)

And the truncation error generated in this approximation is given by

EH3
wSm1/3(f) = 3EH3

w(f)− 2ESm1/3(f) =
184

7!× 225
fvi(0) + . . .

Hence we have
∣∣EH3

wSm1/3(f)
∣∣ ≈ 184

7!×225

∣∣fvi(0)
∣∣.

Theorem 2. Let f(x) be sufficiently differentiable function in the closed in-

terval

Let f(x) be sufficiently differentiable function in the closed interval [−1, 1]

.Then the error

EH3
wSm3/8(f) associated with the rule RH3

wSm3/8(f) is given by

∣∣EH3
wSm3/8(f)

∣∣ ≤ 15714

315× 675× 243
| fvi(ξ) | , ξ ∈ [−1, 1] (20)

Proof : Similar to Theorem 5.1.
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6. Numerical verification

Table 1. Comparison among the rules RGL2(f), RH3
w(f),

RSm1/3(f), RSm3/8(f), RH3
wSm1/3(f), RH3

wSm3/8(f), for
approximation of the integrals in the whole interval method

Integrals Exact
value(I)

Approximate Value

RGL2(f) RH3
w(f) RSm1/3(f) RSm3/8(f) RH3

wSm1/3(f) RH3
wSm3/8(f)

I =∫ 1
0
e−x2

dx

0.746825 0.746594 0.747054 0.747180 0.79699231 0.7468012 0.74686889

I6=
∫ 1
0
√

x sin xdx 0.3642219 0.3632212 0.3652365 0.3662485 0.36535991 0.36321199 0.36560703

Table 2. Approximation of the integrals in the adaptive quad-
rature routines:

Integrals Exact
Value(I)

Approximate
Value
RGL2(f)

No of
step

Error Approximate
Value
RH3

w(f)

No
of
step

Error Prescribed
Tolerance

I =∫ 1
0
e−x2

dx

0.746825 0.74652412 15 0.0000008 0.746824138 15 0.00000086 0.00001

I6=
∫ 1
0
√

x sin xdx 0.3642219 0.36422157 11 0.0000003 0.3642222 11 0.0000003 0.00001

Table 3. Approximation of the integrals in the adaptive quad-
rature routines:

Integrals Exact
Value(I)

Approximate
Value
RSim1/3(f)

No
of
step

Error Approximate
Value
RSim3/8(f)

No of
step

Error Prescribed
Tolerance

I =∫ 1
0
e−x2

dx

0.746825 0.74682414 15 0.0000008 0.74682418 08 0.0000008 0.00001

I6=
∫ 1
0
√

x sin xdx 0.3642219 0.3642225 11 0.000192 0.36422257 09 0.00000067 0.00001

Table 4. Approximation of the integrals in the adaptive quad-
rature routines:

Integrals Exact
Value(I)

Approximate
Value
RH3

wSim1/3(f)

No
of
step

Error Approximate
Value
RH3

wSim3/8(f)

No
of
step

Error Prescribed
Tolerance

I =∫ 1
0
e−x2

dx

0.746825 0.74682413 03 0.0000008 0.74682413 03 0.0000008 0.00001

I6=
∫ 1
0
√

x sin xdx 0.3642219 0.3642209 07 0.0000009 0.36422218 09 0.00000028 0.00001
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7. Observation

From the table (1) it is observed that the results obtained due to the

mixed rulesRH3
wSm1/3(f) and RH3

wSm3/8(f) are better than their con-

stituent rules RGL2, RH
3
w(f), RSm1/3(f), RSm3/8(f) when applied on whole

interval. However when these rules are used in adaptive mode, tables (2),(3),(4)

depict that the mixed quadrature rulesRH3
wSm1/3(f) andRH3

wSm3/8(f),give

very good result and take less number of steps than its constituent rules. Even

the results are better than the results of previously solved papers [6,7,8].

8. Conclusion

In this paper ,we have concentrated mainly on computation of definite in-

tegrals in the adaptive quadrature routines involving mixed quadrature rules.

We observed that mixed quadrature rules formed using anti-Gaussian quadra-

ture can very well be used for evaluating real definite integrals in the adaptive

quadrature routines.
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