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Abstract Trigonometric Fourier approximation and Lipchitz class of function
had been introduced by Zygmund and McFadden respectively. Dealing with
degree of approximation of conjugate series of a Fourier series of a function of
Lipchitz class Misra et al. have established certain theorems. Extending their
results, in this paper a theorem on trigonometric approximation of conjugate

series of Fourier series of a function f € Lip(§(t),r) by product summability
(E,S)(N,pn, qn)
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1. INTRODUCTION

Let > ay, be a given infinite series with sequence of partial sums {s,, }.Let{p, }

and {¢,} be the sequences of positive real numbers such that

n n
Po=> p,and Qn=> q (1)
v=0 v=0
Let

1™
ty = 7 anfu(b/su (2)
" y=0

where r, = pogn + P1gn—1 + ... + Pnqo(# 0),p—1 = ¢—1 = r—1 = 0. Then {t,}

is called the sequence of (N, p,, g,) mean of the sequence {s,}. If
tp, — s asn — oo (3)

then the series ) a,, is said to be (N, py,,g,) summable to s. The necessary
and sufficient conditions for regularity of (N, py, g,) method are [1]:

Pn—vqu
Tn

— 0, for each integer v > 0 as n — oo (4)

and

n
Z |Pn—vqu| < H|ry| where H is a positive integer independent ofn.  (5)
v=0

The sequence-to-sequence transformation|2]

1

T, = W ;} C(”? V)Qn—usy (6)

defines the (F, ¢) mean of the sequence {s,}.If
T, — sasn — oo (7)

then the series Y ay, is said to be (E, ¢) summable to s.Clearly, (E, ¢) method

is regular.
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Further, the (E, q) transform of (N, p,, q,) transform of{s,} is defined by

1
1+

n k
1 1

E C(n,k qn—k: — 2 Pk—vquvSy
(1+q)" & (n. }) {Tk e ;

(8)

O(TL, k)qn_ktkz =
k=0

Tn =

If

Tn — S asn — 00 (9)
then the series > a,, is said to be (E, q)(N, pn, qn) summable to s. Let f(t) be
a periodic function with period 27 and L-integrable over (—m, ). The Fourier

series associated with f at any point x is defined by

oo oo
f(z) ~ a—; Z (ancosnz + bysinnz) = Z Ap(x) (10)
n=1 n=0
and the conjugate Fourier series of (10) is
oo o0
Z (bpcosnz — apsinnz) = Z By (x) (11)
n=1 n=0
The Lo, norm of a function f : R — R is defined by

[flloo = sup{[f(z)[ : x € R} (12)

and L, norm is defined by

2 1
e ={ [ Ir@paz} o=, (13)
The degree of approximation of a function f : R — R by a trigonometric

polynomial P, (x) of degree n under the norm ||.|| is defined by [7]
1P = flloo = sup{|Pn(z) — f(2)| : 2 € R} (14)
and the degree of approximation E,(f) of a function f € L, is given by [6]
Bo(f) = min | 22~ 7, (19

This method is called Trigonometric Fourier approximation. A function f €
Lipa [if [3]
[f(z+1) = f2)] = O(Jt[*), 0 < <1 (16)
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and f € Lip(a,r) , 0 < o < 2, if]3]
1

(/27r f@+1) = f@)ldz)” =O(*),0<a<lr=1t>0  (17)
0

For a positive increasing function £(¢) and an integer p > 1, we define[13],

f € Lip(&(t),r) if

( /0 [ +1) = f@)ldz)" = 0Ew), a8)

We use the following notation through out this paper:

1
V() = Sif(@+18) = flz—ct)} (19)
Sn(f;x) = n-th partial sum of the conjugate Fourier series (20)
and

n k t 1
7 1 1 cos3 cos(u—i— 2)t
K,(t)= —————) C(nk)s" " = vy

®) m(1+s)" — (n,k)s {Tk: VZ::OPk 4 sing }

(21)
Further the method (E,q)(V,pn,qn) is regular and this case is supposed
through out this paper.

2. KNOWN THEOREMS

Dealing with the degree of approximation by product summability, Misra et
al[4] proved the following theorem using (F, q)(N,p,) mean of the conjugate

series of a Fourier series.

2.1. Theorem: If f is a 27 periodic function of class Lipa, then the degree
of approximation by the product mean (E,q)(N,p,) summability means of
the conjugate series (11) of the Fourier series (10) is given by ||7, — flleo =

O(ﬁ),o < a < 1 where 7, is defined in(8).
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Subsequently, Misra et al[5] established another theorem on degree of approxi-
mation by the product mean (E, q)(NV, p,) of the conjugate series of the fourier

series of a function of classLip(«, ). They prove:

2.2. Theorem: If f is a 27 periodic function of class Lip(a, ), then the de-
gree of approximation by the product mean (E, q)(N,p,) summability means
of the conjugate series (11) of the Fourier series (10) is given by |7, — fllco =

(ﬁ),o < a < 1,7 > 1 where 7, is defined in(8).
n+1)\ T

3. MAIN THEOREM

In this paper, we have studied a theorem on the degree of approximation
by the product mean (E,S)(N,pn,qn) of the conjugate series of the Fourier

series of a function of class Lip(£(t), r).We prove:

3.1. Theorem: If f is a 27w periodic function of class Lip(£(t),[), then the
degree of approximation by the product mean (FE,s)(N,pp,q,) summabil-

ity means of the conjugate series (11) of the Fourier series (10) is given by

70— flloo = O((n + 1)(°‘+%)§(n%rl)>,l > 1 where 7, is defined in (8).

4. REQUIRED LEMMAS

We require the following lemmas for the proof of the theorem.

4.1. Lemma:

(n+1)
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Proof of Lemma 4.1: For 0 <t < 1) We have sinnt < nsint

(n+1

1

’E(t”:% ch k) k{ Zp’f VQVCOSQ_COS£V+2)t}‘

S 2

1
< vl ooy
yr(lis) ZC n, k)s" ’“{%Zm (00 +00))
{

k

i zpk )}

IN
Q

1 n—k
At ZC’n k)s

This proves the Lemma.

4.2. Lemma:

Proof of Lemma 4.2:
By Jordan’s lemma, for L_<i<n , we have sin (i) > % Then

K, (t)] =

(14 s)"

n k
a Z;) C(n, k)S”k{:k gopkyqy}‘

[
~ 2m(1+s)"t o

! ™ Cn, k) { k
3Ol ks (Sl

2(1 4+ s)nt =

i: C(n, k)s”_k’
k=0

1
C2(1+s)mt

-of})

t t
Zpk qu( (25inu§ cosy§+1/sint

)l
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This proves the lemma.
Proof of Theorem 3.1:
Using Riemann-Lebesgue theorem, for the nth partial sum 3,(f;x) of the

conjugate Fourier series (11) of f(z) and following Titchmarch[6], we have

™ cost —sin(n+1)t
slfi) 1) = - [ v —"—— ((;) )

™

using (2), the (N, pp, ¢,) transform of 5,(f; ) is given by

t . 1
9 T n cosﬁ—sm<n—|—§ t

b= 1) = o [ O Y e Y

k=0 sin <§)

Denoting the (E, q)(N,p, q) transform of 5,(f;x) by 7,,, we have

) - n . 1™ cos £ — sin <n+
7 = fIl = 7T(1+8)”/0 w(t) kZ:OC(n’ k)s k{ﬁ kzzopn_k% 2 2sin <§)
— [ v Fattyat
{ *+ [ Jeokawa

)t}dt
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Now
9 ﬁ n 15 cos%—sin(n—i—%)t
= C(n, k)s" k= — d
’I1| 7_‘,(1 +S)n 0 ¢(t)kzzo (n7 )S {Tk ;}p L4k 9 sin <%> } t
=
=| [T R0
1

m)iﬁ

(T

1 1
Wherej + — =1, using Holder’s inequality

§(1) Kn(t)

(n+1y) (3.1.1)

1
T l l T m m
|15 < ( ¢((;))‘ dt) </ () Ky (t) dt) By the Holder’s inequality
1
xSy

dy) " (3.1.2)
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(3)

Since,£(t) is a positive increasing function, so is ( ) . Using the second
1
Y

mean value theorem we get

3|

1 ntl g 1
=0| (n+ 1)£(m) /(S ?dy Jfor some; <5i<n+1

o vie(; 1)

Then from (3.1.1) and (3.1.2),we have

|7 — f(2)| =0 <n+1>75(n+1) forl>1
Hence,
Irn— f@lle = sup_Imn— @) =0 (4 Dte( ) Jor 121
—r<lx<lm n+1 -

This completes the proof of the theorem.
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