

**Trigonometric approximation of the conjugate series of a function
of generalized Lipchitz class by product summability**

¹B.P.Padhy, ²P.K.Palo, ³P.Samanta, ⁴M.Misra and ⁵U.K.Misra

¹Department of Mathematics, School of Applied Sciences,
KIIT University, Bhubaneswar-751024, India

Email: iraady@gmail.com

² Department of Mathematics, Biswasray Science College,
Patapur,Ganjam, Odisha,India.

³ P.G.Department of Mathematics, Berhampur University,
Bhanjabihar,Ganjam, Odisha,India.

⁴Department of Mathematics, B.A.College,
Berhampur, Odisha, India.

⁵Department of Mathematics, National Institute of Science and Technology,
Pallur Hills, Berhampur, Odisha, India.

Abstract Trigonometric Fourier approximation and Lipchitz class of function had been introduced by Zygmund and McFadden respectively. Dealing with degree of approximation of conjugate series of a Fourier series of a function of Lipchitz class Misra et al. have established certain theorems. Extending their results, in this paper a theorem on trigonometric approximation of conjugate series of Fourier series of a function $f \in Lip(\xi(t), r)$ by product summability $(E, S)(N, p_n, q_n)$

Keywords and phrases Fourier Approximation, $Lip(\xi(t), r)$ class function, (E, q) mean, (N, p_n, q_n) mean, $(E, S)(N, p_n, q_n)$ product mean, Conjugate

Fourier Series and Lebesgue Integral.

2010 Mathematics Subject Classification No 42B05, 42B08

1. INTRODUCTION

Let $\sum a_n$ be a given infinite series with sequence of partial sums $\{s_n\}$. Let $\{p_n\}$ and $\{q_n\}$ be the sequences of positive real numbers such that

$$P_n = \sum_{\nu=0}^n p_\nu \text{ and } Q_n = \sum_{\nu=0}^n q_\nu \quad (1)$$

Let

$$t_n = \frac{1}{r_n} \sum_{\nu=0}^n p_{n-\nu} q_\nu s_\nu \quad (2)$$

where $r_n = p_0 q_n + p_1 q_{n-1} + \dots + p_n q_0 (\neq 0)$, $p_{-1} = q_{-1} = r_{-1} = 0$. Then $\{t_n\}$ is called the sequence of (N, p_n, q_n) mean of the sequence $\{s_n\}$. If

$$t_n \rightarrow s \text{ as } n \rightarrow \infty \quad (3)$$

then the series $\sum a_n$ is said to be (N, p_n, q_n) summable to s . The necessary and sufficient conditions for regularity of (N, p_n, q_n) method are [1]:

$$\frac{p_{n-\nu} q_\nu}{r_n} \rightarrow 0, \text{ for each integer } \nu \geq 0 \text{ as } n \rightarrow \infty \quad (4)$$

and

$$\sum_{\nu=0}^n |p_{n-\nu} q_\nu| < H |r_n| \text{ where } H \text{ is a positive integer independent of } n. \quad (5)$$

The sequence-to-sequence transformation [2]

$$T_n = \frac{1}{(1+q)^n} \sum_{\nu=0}^n C(n, \nu) q_{n-\nu} s_\nu \quad (6)$$

defines the (E, q) mean of the sequence $\{s_n\}$. If

$$T_n \rightarrow s \text{ as } n \rightarrow \infty \quad (7)$$

then the series $\sum a_n$ is said to be (E, q) summable to s . Clearly, (E, q) method is regular.

Further, the (E, q) transform of (N, p_n, q_n) transform of $\{s_n\}$ is defined by

$$\tau_n = \frac{1}{(1+q)^n} \sum_{k=0}^n C(n, k) q^{n-k} t_k = \frac{1}{(1+q)^n} \sum_{k=0}^n C(n, k) q^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu s_\nu \right\} \quad (8)$$

If

$$\tau_n \rightarrow s \text{ as } n \rightarrow \infty \quad (9)$$

then the series $\sum a_n$ is said to be $(E, q)(N, p_n, q_n)$ summable to s . Let $f(t)$ be a periodic function with period 2π and L-integrable over $(-\pi, \pi)$. The Fourier series associated with f at any point x is defined by

$$f(x) \sim \frac{a_0}{2} \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x) \quad (10)$$

and the conjugate Fourier series of (10) is

$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) \equiv \sum_{n=0}^{\infty} B_n(x) \quad (11)$$

The L_∞ norm of a function $f : R \rightarrow R$ is defined by

$$\|f\|_\infty = \sup\{|f(x)| : x \in R\} \quad (12)$$

and L_ν norm is defined by

$$\|f\|_\nu = \left\{ \int_0^{2\pi} |f(x)|^\nu dx \right\}^{\frac{1}{\nu}}, \nu \geq 1. \quad (13)$$

The degree of approximation of a function $f : R \rightarrow R$ by a trigonometric polynomial $P_n(x)$ of degree n under the norm $\|\cdot\|_\infty$ is defined by [7]

$$\|P_n - f\|_\infty = \sup\{|P_n(x) - f(x)| : x \in R\} \quad (14)$$

and the degree of approximation $E_n(f)$ of a function $f \in L_\nu$ is given by [6]

$$E_n(f) = \min_{p_n} \|P_n - f\|_\nu \quad (15)$$

This method is called Trigonometric Fourier approximation. A function $f \in Lip\alpha$, if [3]

$$|f(x+t) - f(x)| = O(|t|^\alpha), 0 < \alpha \leq 1 \quad (16)$$

and $f \in Lip(\alpha, r)$, $0 < \alpha \leq 2\pi$, if[3]

$$\left(\int_0^{2\pi} |f(x+t) - f(x)| dx \right)^{\frac{1}{r}} = O(|t|^\alpha), 0 < \alpha \leq 1, r \geq 1, t > 0 \quad (17)$$

For a positive increasing function $\xi(t)$ and an integer $p > 1$, we define[13], $f \in Lip(\xi(t), r)$ if

$$\left(\int_0^{2\pi} |f(x+t) - f(x)| dx \right)^{\frac{1}{r}} = O(\xi(t)), \quad (18)$$

We use the following notation through out this paper:

$$\psi(t) = \frac{1}{2} \{f(x+t) - f(x-ct)\} \quad (19)$$

$$\overline{s_n}(f; x) = n\text{-th partial sum of the conjugate Fourier series} \quad (20)$$

and

$$\overline{K_n}(t) = \frac{1}{\pi(1+s)^n} \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2} \right) t}{\sin \frac{t}{2}} \right\} \quad (21)$$

Further the method $(E, q)(N, p_n, q_n)$ is regular and this case is supposed through out this paper.

2. KNOWN THEOREMS

Dealing with the degree of approximation by product summability, Misra et al[4] proved the following theorem using $(E, q)(\overline{N}, p_n)$ mean of the conjugate series of a Fourier series.

2.1. Theorem: If f is a 2π periodic function of class $Lip\alpha$, then the degree of approximation by the product mean $(E, q)(\overline{N}, p_n)$ summability means of the conjugate series (11) of the Fourier series (10) is given by $\|\tau_n - f\|_\infty = O\left(\frac{1}{(n+1)^\alpha}\right)$, $0 < \alpha < 1$ where τ_n is defined in(8).

Subsequently, Misra et al[5] established another theorem on degree of approximation by the product mean $(E, q)(\bar{N}, p_n)$ of the conjugate series of the fourier series of a function of class $Lip(\alpha, r)$. They prove:

2.2. Theorem: If f is a 2π periodic function of class $Lip(\alpha, r)$, then the degree of approximation by the product mean $(E, q)(\bar{N}, p_n)$ summability means of the conjugate series (11) of the Fourier series (10) is given by $\|\tau_n - f\|_\infty = O\left(\frac{1}{(n+1)^{(\alpha+\frac{1}{r})}}\right)$, $0 < \alpha < 1, r \geq 1$ where τ_n is defined in(8).

3. MAIN THEOREM

In this paper, we have studied a theorem on the degree of approximation by the product mean $(E, S)(N, p_n, q_n)$ of the conjugate series of the Fourier series of a function of class $Lip(\xi(t), r)$. We prove:

3.1. Theorem: If f is a 2π periodic function of class $Lip(\xi(t), l)$, then the degree of approximation by the product mean $(E, s)(N, p_n, q_n)$ summability means of the conjugate series (11) of the Fourier series (10) is given by $\|\tau_n - f\|_\infty = O\left((n+1)^{(\alpha+\frac{1}{r})}\xi\left(\frac{1}{n+1}\right)\right)$, $l \geq 1$ where τ_n is defined in (8).

4. REQUIRED LEMMAS

We require the following lemmas for the proof of the theorem.

4.1. Lemma:

$$|\bar{K}_n(t)| = O(n), 0 \leq t \leq \frac{1}{(n+1)}$$

Proof of Lemma 4.1: For $0 \leq t \leq \frac{1}{(n+1)}$, we have $\sin nt \leq nsint$

$$\begin{aligned}
|\overline{K_n}(t)| &= \frac{1}{\pi(1+s)^n} \left| \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu \frac{\cos \frac{t}{2} - \cos(\nu + \frac{1}{2})t}{\sin \frac{t}{2}} \right\} \right| \\
&\leq \frac{1}{\pi(1+s)^n} \left| \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu \left(O\left(2 \sin \nu \frac{t}{2} \cos \nu \frac{t}{2} + \nu \sin t\right) \right) \right\} \right| \\
&\leq \frac{1}{\pi(1+s)^n} \left| \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu \left(O(\nu) + O(\nu) \right) \right\} \right| \\
&\leq \frac{1}{\pi(1+s)^n} \left| \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{O(K)}{R_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu \right\} \right| \\
&= O(n)
\end{aligned}$$

This proves the Lemma.

4.2. Lemma:

$$|\overline{K_n}(t)| = O\left(\frac{1}{t}\right), \frac{1}{(n+1)} \leq t \leq \pi$$

Proof of Lemma 4.2:

By Jordan's lemma, for $\frac{1}{(n+1)} \leq t \leq \pi$, we have $\sin\left(\frac{t}{2}\right) \geq \frac{t}{\pi}$. Then

$$\begin{aligned}
|\overline{K_n}(t)| &= \frac{1}{\pi(1+s)^n} \left| \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu \frac{\cos \frac{t}{2} - \cos(\nu + \frac{1}{2})t}{\sin \frac{t}{2}} \right\} \right| \\
&\leq \frac{\pi}{2\pi(1+s)^n t} \left| \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu \right\} \right| \\
&= \frac{1}{2(1+s)^n t} \left| \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_\nu \right\} \right| \\
&= \frac{1}{2(1+s)^n t} \left| \sum_{k=0}^n C(n, k) s^{n-k} \right| \\
&= O\left(\frac{1}{t}\right).
\end{aligned}$$

This proves the lemma.

Proof of Theorem 3.1:

Using Riemann-Lebesgue theorem, for the nth partial sum $\overline{s_n}(f; x)$ of the conjugate Fourier series (11) of $f(x)$ and following Titchmarsh[6], we have

$$\overline{s_n}(f; x) - f(x) = \frac{2}{\pi} \int_0^\pi \psi(t) \frac{\cos \frac{t}{2} - \sin \left(n + \frac{1}{2}\right)t}{2 \sin \left(\frac{t}{2}\right)} dt$$

using (2), the (N, p_n, q_n) transform of $\overline{s_n}(f; x)$ is given by

$$t_n - f(x) = \frac{2}{\pi r^n} \int_0^\pi \psi(t) \sum_{k=0}^n p_{n-k} q_k \frac{\cos \frac{t}{2} - \sin \left(n + \frac{1}{2}\right)t}{2 \sin \left(\frac{t}{2}\right)} dt$$

Denoting the $(E, q)(N, p, q)$ transform of $\overline{s_n}(f; x)$ by τ_n , we have

$$\begin{aligned} \|\tau_n - f\| &= \frac{2}{\pi(1+s)^n} \int_0^\pi \psi(t) \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{k=0}^n p_{n-k} q_k \frac{\cos \frac{t}{2} - \sin \left(n + \frac{1}{2}\right)t}{2 \sin \left(\frac{t}{2}\right)} \right\} dt \\ &= \int_0^\pi \psi(t) \overline{K_n}(t) dt \\ &= \left\{ \int_0^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^\pi \right\} \psi(t) \overline{K_n}(t) dt \\ &= I_1 + I_2, \text{say} \end{aligned}$$

Now

$$\begin{aligned}
|I_1| &= \frac{2}{\pi(1+s)^n} \int_0^{\frac{1}{n+1}} \psi(t) \sum_{k=0}^n C(n, k) s^{n-k} \left\{ \frac{1}{r_k} \sum_{k=0}^n p_{n-k} q_k \frac{\cos \frac{t}{2} - \sin \left(n + \frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} \right\} dt \\
&= \left| \int_0^{\frac{1}{n+1}} \psi(t) \overline{K_n}(t) dt \right| \\
&= \left(\int_0^{\frac{1}{n+1}} \left| \frac{\psi(t)}{\xi(t)} \right|^l dt \right)^{\frac{1}{l}} \left(\int_0^{\frac{1}{n+1}} \left| \xi(t) K_n(t) \right|^m dt \right)^{\frac{1}{m}} \\
&\text{where } \frac{1}{l} + \frac{1}{m} = 1, \text{ using Holder's inequality} \\
&= O(1) \left(\int_0^{\frac{1}{n+1}} \xi(t) n^m dt \right)^{\frac{1}{m}} \\
&= O\left(\xi\left(\frac{1}{n+1}\right)\right) \left(\frac{n^m}{n+1}\right)^{\frac{1}{m}} \\
&= O\left(\xi\left(\frac{1}{n+1}\right)\right) \left(\frac{1}{n+1}\right)^{\frac{1}{m}-1} \\
&= O\left(\xi\left(\frac{1}{n+1}\right)\right) \left(\frac{1}{n+1}\right)^{\frac{-1}{l}} \\
&= O\left(\xi\left(\frac{1}{n+1}\right)\right) (n+1)^{\frac{1}{l}}
\end{aligned} \tag{3.1.1}$$

Next

$$\begin{aligned}
|I_2| &\leq \left(\int_{\frac{1}{(n+1)}}^{\pi} \left| \frac{\psi(t)}{\xi(t)} \right|^l dt \right)^{\frac{1}{l}} \left(\int_{\frac{1}{n+1}}^{\pi} \left| \xi(t) K_n(t) \right|^m dt \right)^{\frac{1}{m}} \text{ By the Holder's inequality} \\
&= O(1) \left(\int_{\frac{1}{n+1}}^{\pi} \left(\frac{\xi(t)}{t} \right)^m dt \right)^{\frac{1}{m}} \text{ using lemma 4.2} \\
&= O(1) \left(\int_{\frac{1}{\pi}}^{n+1} \left| \frac{\xi\left(\frac{1}{y}\right)}{\left(\frac{1}{y}\right)} \right|^m dy \right)^{\frac{1}{m}}
\end{aligned} \tag{3.1.2}$$

Since, $\xi(t)$ is a positive increasing function, so is $\left\{ \frac{\xi\left(\frac{1}{y}\right)}{\left(\frac{1}{y}\right)} \right\}$. Using the second mean value theorem we get

$$\begin{aligned} &= O\left((n+1)\xi\left(\frac{1}{n+1}\right)\right)\left(\int_{\delta}^{n+1} \frac{1}{y^2} dy\right)^{\frac{1}{m}}, \text{for some } \frac{1}{\pi} \leq \delta \leq n+1 \\ &= O\left((n+1)^{\frac{1}{l}}\xi\left(\frac{1}{n+1}\right)\right) \end{aligned}$$

Then from (3.1.1) and (3.1.2), we have

$$|\tau_n - f(x)| = O\left((n+1)^{\frac{1}{l}}\xi\left(\frac{1}{n+1}\right)\right), \text{for } l \geq 1$$

Hence,

$$\|\tau_n - f(x)\|_{\infty} = \sup_{-\pi < x < \pi} |\tau_n - f(x)| = O\left((n+1)^{\frac{1}{l}}\xi\left(\frac{1}{n+1}\right)\right), \text{for } l \geq 1$$

This completes the proof of the theorem.

REFERENCES

- [1] Borwein, D., On Product of sequence(*Journal of London Mathematical society*),33 (1958) 352-357.
- [2] Hardy,G.H.,Divergent Series(First Edition) *Oxford University press*,(1970).
- [3] Mcfadden,L., Absolute Norlund Summability *Duke Maths. Journal*,99(1942) 168-207.
- [4] Misra,U.K.,Misra.M.,Padhy,B.P.,and Buxi,S.K.,On degree of approximation by product means of conjugate series of Fourier series *International journal of Math. Scie. and Engg. Appli.*,6(1)(2012), 363-370.
- [5] Misra,U.K.,Paikray,S.K.,Jati,R.K.,and Sahu,N.C.,On degree of approximation by product means of conjugate series of Fourier series *Bulletin of Society for Mathematical services and standards*,1(4)(2012), 12-20.
- [6] Titchmarch.E.C., The Theory of functions *Oxford University Press*,(1939).
- [7] Zygmund.A,Trigonometric Series *Cambridge University press,Cambridge*, Vol.I(2), (1959).